arXiv:2507.00195v1 Announce Type: cross Abstract: This thesis contributes to the theoretical understanding of local update algorithms, especially Local SGD, in distributed and federated optimization under realistic models of data heterogeneity. A central focus is on the bounded second-order heterogeneity assumption, which is shown to be both necessary and sufficient for local updates to outperform centralized or mini-batch methods in convex and non-convex settings. The thesis establishes tight upper and lower bounds in several regimes for various local update algorithms and characterizes the min-max complexity of multiple problem classes. At its core is a fine-grained consensus-error-based analysis framework that yields sharper finite-time convergence bounds under third-order smoothness and relaxed heterogeneity assumptions. The thesis also extends to online federated learning, providing fundamental regret bounds under both first-order and bandit feedback. Together, these results clarify when and why local updates offer provable advantages, and the thesis serves as a self-contained guide for analyzing Local SGD in heterogeneous environments.