cs.AI updates on arXiv.org 07月02日 12:03
What Makes Local Updates Effective: The Role of Data Heterogeneity and Smoothness
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了分布式和联邦优化中的本地更新算法,特别是Local SGD,在数据异构性模型下的理论理解。重点研究了边界二阶异构性假设,并通过严格的上下界和最小-最大复杂性分析,展示了Local SGD在凸和非凸设置中优于集中式或小批量方法的必要性。同时,文章还扩展到了在线联邦学习,提供了第一阶和bandit反馈下的基本遗憾界限。

arXiv:2507.00195v1 Announce Type: cross Abstract: This thesis contributes to the theoretical understanding of local update algorithms, especially Local SGD, in distributed and federated optimization under realistic models of data heterogeneity. A central focus is on the bounded second-order heterogeneity assumption, which is shown to be both necessary and sufficient for local updates to outperform centralized or mini-batch methods in convex and non-convex settings. The thesis establishes tight upper and lower bounds in several regimes for various local update algorithms and characterizes the min-max complexity of multiple problem classes. At its core is a fine-grained consensus-error-based analysis framework that yields sharper finite-time convergence bounds under third-order smoothness and relaxed heterogeneity assumptions. The thesis also extends to online federated learning, providing fundamental regret bounds under both first-order and bandit feedback. Together, these results clarify when and why local updates offer provable advantages, and the thesis serves as a self-contained guide for analyzing Local SGD in heterogeneous environments.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Local SGD 数据异构性 联邦学习 优化算法 理论分析
相关文章