cs.AI updates on arXiv.org 06月30日 12:14
MobiVerse: Scaling Urban Mobility Simulation with Hybrid Lightweight Domain-Specific Generator and Large Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为MobiVerse的混合框架,旨在解决现有交通模拟平台在算法开发、政策实施和大规模评估方面的不足。MobiVerse通过结合轻量级生成器和LLM的优势,实现了高效、适应性强的活动链生成,并在洛杉矶Westwood地区进行了案例研究,验证了其效果。

arXiv:2506.21784v1 Announce Type: new Abstract: Understanding and modeling human mobility patterns is crucial for effective transportation planning and urban development. Despite significant advances in mobility research, there remains a critical gap in simulation platforms that allow for algorithm development, policy implementation, and comprehensive evaluation at scale. Traditional activity-based models require extensive data collection and manual calibration, machine learning approaches struggle with adaptation to dynamic conditions, and treding agent-based Large Language Models (LLMs) implementations face computational constraints with large-scale simulations. To address these challenges, we propose MobiVerse, a hybrid framework leverages the efficiency of lightweight domain-specific generator for generating base activity chains with the adaptability of LLMs for context-aware modifications. A case study was conducted in Westwood, Los Angeles, where we efficiently generated and dynamically adjusted schedules for the whole population of approximately 53,000 agents on a standard PC. Our experiments demonstrate that MobiVerse successfully enables agents to respond to environmental feedback, including road closures, large gathering events like football games, and congestion, through our hybrid framework. Its modular design facilitates testing various mobility algorithms at both transportation system and agent levels. Results show our approach maintains computational efficiency while enhancing behavioral realism. MobiVerse bridges the gap in mobility simulation by providing a customizable platform for mobility systems planning and operations with benchmark algorithms. Code and videos are available at https://github.com/ucla-mobility/MobiVerse.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MobiVerse 交通规划 城市模拟
相关文章