随着大语言模型(LLM)能力的不断提升,RAG(Retrieval Augmented Generation,检索增强生成)技术逐渐成为提升模型知识准确性和可靠性的重要手段。通过从实时数据和外部文档中检索相关信息,模型能够更准确地回答基于事实的问题,从而有效降低“幻觉”现象的发生概率。
而 LangChain 中的 LangGraph 模块则能够将 LLM、RAG 以及各种工具调用整合为一个结构清晰的智能 Agent 流程图,大大增强了问答系统的灵活性与动态响应能力。
本文将通过一个完整的示例,演示如何使用 LangChain
构建一个融合“RAG + Agent
”的问答系统。所附代码具备良好的可复用性,旨在帮助读者快速实现并部署智能应用。
工程结构
llm_env.py # 初始化 LLMrag_agent.py # 结合 RAG 与 Agent 的主逻辑
初始化 LLM
首先通过 llm_env.py
初始化一个 LLM 模型对象,供整个流程使用:
from langchain.chat_models import init_chat_modelllm = init_chat_model("gpt-4o-mini", model_provider="openai")
RAG + Agent 系统搭建
导入依赖
import osimport sysimport timesys.path.append(os.getcwd())from llm_set import llm_envfrom langchain.embeddings import OpenAIEmbeddingsfrom langchain_postgres import PGVectorfrom langchain_community.document_loaders import WebBaseLoaderfrom langchain_core.documents import Documentfrom langchain_text_splitters import RecursiveCharacterTextSplitterfrom langgraph.graph import MessagesState, StateGraphfrom langchain_core.tools import toolfrom langchain_core.messages import HumanMessage, SystemMessagefrom langgraph.prebuilt import ToolNode, tools_conditionfrom langgraph.graph import ENDfrom langgraph.checkpoint.postgres import PostgresSaver
初始化 LLM 与 Embedding
llm = llm_env.llmembeddings = OpenAIEmbeddings(model="text-embedding-3-large")
初始化向量数据库
vector_store = PGVector( embeddings=embeddings, collection_name="my_rag_agent_docs", connection="postgresql+psycopg2://postgres:123456@localhost:5433/langchainvector",)
加载网页文档
url = "https://www.cnblogs.com/chenyishi/p/18926783"loader = WebBaseLoader( web_paths=(url,),)docs = loader.load()for doc in docs: doc.metadata["source"] = url
文本分割 & 入库
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50)all_splits = text_splitter.split_documents(docs)existing = vector_store.similarity_search(url, k=1, filter={"source": url})if not existing: _ = vector_store.add_documents(documents=all_splits) print("文档向量化完成")
定义 RAG 检索工具
通过 @tool
装饰器,定义一个文档检索工具,供 Agent 动态调用:
@tool(response_format="content_and_artifact")def retrieve(query: str) -> tuple[str, dict]: """Retrieve relevant documents from the vector store.""" retrieved_docs = vector_store.similarity_search(query, k=2) if not retrieved_docs: return "No relevant documents found.", {} return "\n\n".join( (f"Source: {doc.metadata}\n" f"Content: {doc.page_content}") for doc in retrieved_docs ), retrieved_docs
定义 Agent Graph 节点
LLM 调用工具节点
def query_or_respond(state: MessagesState): llm_with_tools = llm.bind_tools([retrieve]) response = llm_with_tools.invoke(state["messages"]) return {"messages": [response]}
工具节点
tools = ToolNode([retrieve])
生成响应节点
def generate(state: MessagesState): recent_tool_messages = [] for message in reversed(state["messages"]): if message.type == "tool": recent_tool_messages.append(message) else: break tool_messages = recent_tool_messages[::-1] system_message_content = "\n\n".join(doc.content for doc in tool_messages) conversation_messages = [ message for message in state["messages"] if message.type in ("human", "system") or (message.type == "ai" and not message.tool_calls) ] prompt = [SystemMessage(system_message_content)] + conversation_messages response = llm.invoke(prompt) return {"messages": [response]}
组装 Agent 流程图
graph_builder = StateGraph(MessagesState)graph_builder.add_node(query_or_respond)graph_builder.add_node(tools)graph_builder.add_node(generate)graph_builder.set_entry_point("query_or_respond")graph_builder.add_conditional_edges( "query_or_respond", tools_condition, path_map={END: END, "tools": "tools"},)graph_builder.add_edge("tools", "generate")graph_builder.add_edge("generate", END)
启用 Checkpoint & 运行流程
数据库存储器
DB_URI = "postgresql://postgres:123456@localhost:5433/langchaindemo?sslmode=disable"with PostgresSaver.from_conn_string(DB_URI) as checkpointer: checkpointer.setup() graph = graph_builder.compile(checkpointer=checkpointer)
启动交互循环
input_thread_id = input("输入thread_id:")time_str = time.strftime("%Y%m%d", time.localtime())config = {"configurable": {"thread_id": f"rag-{time_str}-demo-{input_thread_id}"}}print("输入问题,输入 exit 退出。")while True: query = input("你: ") if query.strip().lower() == "exit": break response = graph.invoke({"messages": [HumanMessage(content=query)]}, config=config) print(response)
总结
本文完整展示了如何用 LangChain + LangGraph,结合:
LLM(大模型)
Embedding 检索(RAG)
Agent 动态调用工具
流程图编排
Checkpoint 存储
构建一个智能问答系统,通过将 RAG 检索工具与 Agent 机制相结合,使大语言模型(LLM)能够在需要时自主调用检索功能,从而显著提升其对知识的引用能力和准确性,有效缓解“幻觉”问题。该方案具备良好的实用性和落地价值,适用于多种实际应用场景。