Astronomers in China have observed a pulsar that becomes partially eclipsed by an orbiting companion star every few hours. This type of observation is very rare and could shed new light on how binary star systems evolve.
While most stars in our galaxy exist in pairs, the way these binary systems form and evolve is still little understood. According to current theories, when two stars orbit each other, one of them may expand so much that its atmosphere becomes large enough to encompass the other. During this “envelope” phase, mass can be transferred from one star to the other, causing the stars’ orbit to shrink over a period of around 1000 years. After this, the stars either merge or the envelope is ejected.
In the special case where one star in the pair is a neutron star, the envelope-ejection scenario should, in theory, produce a helium star that has been “stripped” of much of its material and a “recycled” millisecond pulsar – that is, a rapidly spinning neutron star that flashes radio pulses hundreds of times per second. In this type of binary system, the helium star can periodically eclipse the pulsar as it orbits around it, blocking its radio pulses and preventing us from detecting them here on Earth. Only a few examples of such a binary system have ever been observed, however, and all previous ones were in nearby dwarf galaxies called the Magellanic Clouds, rather than our own Milky Way.
A special pulsar
Astronomers led by Jinlin Han from the National Astronomical Observatories of China say they have now identified the first system of this type in the Milky Way. The pulsar in the binary, denoted PSR J1928+1815, had been previously identified using the Five-hundred-meter Aperture Spherical radio Telescope (FAST) during the FAST Galactic Plane Pulsar Snapshot survey. These observations showed that PSR J1928+1815 has a spin period of 10.55 ms, which is relatively short for a pulsar of this type and suggests it had recently sped up by accreting mass from a companion.
The researchers used FAST to observe this suspected binary system at radio frequencies ranging from 1.0 to 1.5 GHz over a period of four and a half years. They fitted the times that the radio pulses arrived at the telescope with a binary orbit model to show that the system has an eccentricity of less than 3 × 10−5. This suggests that the pulsar and its companion star are in a nearly circular orbit. The diameter of this orbit, Han points out, is smaller than that of our own Sun, and its period – that is, the time it takes the two stars to circle each other – is correspondingly short, at 3.6 hours. For a sixth of this time, the companion star blocks the pulsar’s radio signals.
The team also found that the rate at which this orbital period is changing (the so-called spin period derivative) is unusually high for a millisecond-period pulsar, at 3.63 × 10−18 s s−1 .This shows that energy is rapidly being lost from the system as the pulsar spins down.
“We knew that PSR J1928+1815 was special from November 2021 onwards,” says Han. “Once we’d accumulated data with FAST, one of my students, ZongLin Yang, studied the evolution of such binaries in general and completed the timing calculations from the data we had obtained for this system. His results suggested the existence of the helium star companion and everything then fell into place.”
Short-lived phenomenon
This is the first time a short-life (107 years) binary consisting of a neutron star and a helium star has ever been detected, Han tells Physics World. “It is a product of the common envelope evolution that lasted for only 1000 years and that we couldn’t observe directly,” he says.
“Our new observation is the smoking gun for long-standing binary star evolution theories, such as those that describe how stars exchange mass and shrink their orbits, how the neutron star spins up by accreting matter from its companion and how the shared hydrogen envelope is ejected.”
The system could help astronomers study how neutron stars accrete matter and then cool down, he adds. “The binary detected in this work will evolve to become a system of two compact stars that will eventually merge and become a future source of gravitational waves.”
Full details of the study are reported in Science.
The post Short-lived eclipsing binary pulsar spotted in Milky Way appeared first on Physics World.