尽管目前网络重整化的某些方法在构建几何与系综异质性的通用框架方面取得显著进展,但仍存在若干挑战与开放性问题,我们将在此讨论。分辨率水平真实世界的网络实现中,由于拓扑结构的异质性,因而将几何和拓扑的组织归于“功能单元”的操作具有相当挑战性。这比同质的格点或规则树的情况更为复杂。此外,在真实世界网络网络的不同表示形式中,定义节点的合理分辨率尺度通常并非是系统内蕴的固有性质,而是源于观测限制或数据聚合的粗糙程度。例如,保密性问题导致金融关系网络(如银行间借贷与风险敞口)和经济关系网络(如供应链)中的个体连接的信息无法获取,而人际接触数量对流行病网络的影响仅能部分可见。理想情况下,人们希望确定并区分网络属性固有的特征尺度与数据分辨率相关的尺度。与动力学过程相容的重整化对任意网络上的动力学结构和过程的重整化的主要挑战在于,如何使用与底层图结构和系综随机性的重整化相兼容的方式,来进行对动力学结构和过程进行重整化。此前研究这一问题的学者们仅限于探讨规则或分形格点上的动态过程,在这些规则格点中,粗粒化的结构部分能够相当自然地加以定义。具体而言,精确的重整化群计算已应用于分形网络上的高斯场[155]和随机游走[156],并扩展至研究Hanoi网络上Ising模型的不动点[157],揭示出不同区域内独特的临界非普适行为。研究者利用裁剪技术探索了网络增长模型上渗流临界行为,发现其与无关联网络中观察到的行为存在偏差[158]。这些方法也用于分析真实世界的系统。例如,学者们为神经元网络中的活动开发了唯象的粗粒化程序,在将其应用于海马体细胞时,能够发现静态和动态的变量均呈现标度特征,表明网络群体行为中存在非平凡的不动点[159]。一般而言,我们可以预期真实世界网络及其粗粒化版本中的结构异质性会导致动力学过程的重整化与拓扑结构的重整化之间存在耦合。然而开发独立于具体方案的框架,以兼容的方式同时重整化网络动态及底层几何或系综结构,仍是一项挑战。广义临界性?真实世界网络中连接的强异质性与非局部性可能影响动力学模型在临界点附近的局部激发与集体激发之间的转变性质。这些性质也可能引发更复杂的行为,从而需要更广义的临界性定义。例如在真实接触网络上的疫情传播动力学中,集体大流行态与局部地方病流行态间的转变可能比近似格点的理想化接触网络更为复杂。相互作用参数可能存在完整区域,使得其中临界行为在宏观但局部的集体子网络中逐步显现,此类参数区域的形成由强拓扑异质性及潜在层级结构决定。该现象表明,拓扑复杂性可能要求将临界点概念扩展至类似于Griffith相的范畴[160,161]信息论视角下的参数相关性与无关性粗粒化意味着信息丢失。这种丢失非但不是缺陷,反而是重整化群技术的核心工具,因为它能识别在最有价值的时空尺度参数,并在这个尺度上描述系统行为。重整化方法最初的设计目标就是用于研究具有大自由度的物理系统,并识别系统参数如何从微观流向宏观尺度。该跨尺度信息流的关键在于:随着尺度增大,某些参数对系统行为的相关性增强,而其他参数逐渐无关。在复杂网络背景下,探索自下而上研究这种信息随参数的流动,可为基于第一性原理理解哪些量和控制参数在最大时空尺度最重要提供重要价值。通过信息论( Fisher 信息与应用于复杂系统的信息几何形式体系在),也可从纯经验视角获得互补的自上而下的方法。物理系统中的参数相关性概念在场论及其流体动力学极限下是通过幂次计算可重整化概念体现的,该概念大致追踪了描述系统动力学所有可能项的导数展开。即,在理论空间中进行有效的泰勒展开,使得即时特征显现。在足够大尺度下,含高阶导数的项对物理观测量的贡献递减。从信息论视角看,这意味观测系综的结果更敏感地依赖于导数展开中主导阶项的系数。因此,参数相关性概念可直接转译为信息论量,且能推广至物理系统之外。这种转译不仅具有直接概念用途,更为识别和理解决定任意系统在大尺度行为的参数开辟通道——即使缺乏微观模型描述,或处理任意几何与系综随机性时亦然。 图4 信息论参数流。 a. MNIST(Modified National Institute of Standards and Technology)数据集中的手写数字“7”实例。 b. 成功分类 MNIST 数据集中左侧图像的30个训练神经网络的 Fisher 信息矩阵特征值(左图)及其分箱密度直方图(右图)。特征值呈现指数型层级结构,表明仅少量集体权重对训练网络精度起关键作用。图由 Leone Luzzatto 提供。信息几何与参数流给定任意数据集,可构建由假设模型生成的似然函数来描述该数据集。最大似然估计即为识别使该似然函数最大化的参数集,并将其作为对底层模型的最佳推断。对数似然相对于参数的二阶导数自然形成度量参数空间距离的度量结构,能够捕捉似然偏离最大值的变化方式。这种推断的几何化(称为信息几何[162])使得在参数流的统一框架下重构统计(贝叶斯)推断与重整化成为可能[163]。基于给定数据集构建的似然对应的 Fisher 信息度量具有显著的特征值层级结构。该层级意味着:最大特征值对应参数的微小变化对观测结果影响最大(图4),其意义直接映射至重整化群意义上的参数相关性概念——最相关参数对应最大特征值[164]。这解释了为何在系统信息有限时,简单模型常能异常有效地捕捉大部分相关特征。在训练用于手写数字识别的神经网络中(图4), Fisher 信息的最大特征值对应的集体权重几乎完全决定训练网络的测试精度,其余参数与权重组合基本无关。轻量化的模型框架[165]也能够通过 Fisher 信息特征值的层级结构识别这些参数。当对网络数据集或模型嵌入的模拟的实现进行不断的粗粒化后,粗粒化的似然函数产生的部分特征值相关性增强而另一部分的相关性减弱,此过程与重整化群相关性精确对应。基于此,仅通过研究数据不断粗粒化下的参数流,即可系统推断不同相与控制参数的存在,此处唯一的假设是粗粒化方案选择、底层的几何/系综随机性的参数化方式及其先验分布的设定。该方法已用于识别异质性化学系统的不同相[166],在复杂网络背景下亦具研究前景。
参考文献
Pósfai, M. & Barabási, A.-L. Network Science (Cambridge Univ. Press, 2016).Squartini, T. & Garlaschelli, D. Maximum-Entropy Networks: Pattern Detection, Network Reconstruction and Graph Combinatorics (Springer, 2017).Newman, M. Networks (Oxford Univ. Press, 2018).Cimini, G. The statistical physics of real-world networks. Nat. Rev. Phys. 1 (2019).Radicchi, F., Ramasco, J., Barrat, A. & Fortunato, S. Complex networks renormalization: flows and fixed points. Phys. Rev. Lett. 101 (2008).Radicchi, F., Barrat, A., Fortunato, S. & Ramasco, J. J. Renormalization flows in complex networks. Phys. Rev. E 79 (2009).Chen, D., Su, H., Wang, X., Pan, G.-J. & Chen, G. Finite-size scaling of geometric renormalization flows in complex networks. Phys. Rev. E 104 (2021).Chen, D., Cai, D. & Su, H. Scaling properties of scale-free networks in degree-thresholding renormalization flows. IEEE Trans. Netw. Sci. Eng. 10 (2023).Serafino, M. True scale-free networks hidden by finite size effects. Proc. Natl Acad. Sci. USA 118 (2021).Itzykson, C. & Drouffe, J. M. Statistical Field Theory: Volume 1, From Brownian Motion to Renormalization and Lattice Gauge Theory (Cambridge Univ. Press, 1989).Burgess, C. P. Introduction to Effective Field Theory (Cambridge Univ. Press, 2020).Bardoscia, M. The physics of financial networks. Nat. Rev. Phys. 3 (2021).Soriano-Paños, D. Modeling communicable diseases, human mobility, and epidemics: a review. Ann. Phys. 534 (2022).Song, C., Havlin, S. & Makse, H. A. Self-similarity of complex networks. Nature 433 (2005).Binder, K. & Young, A. P. Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58 (1986).Bar-Yam, Y. & Patil, S. P. Renormalization of sparse disorder in the Ising model. Preprint at arXiv (2018).Mandelbrot, B. B. The Fractal Geometry of Nature Vol. 2 (Freeman, 1982).Samsel, M., Makulski, K., Łepek, M., Fronczak, A. & Fronczak, P. Towards fractal origins of the community structure in complex networks: a model-based approach. Preprint at arXiv (2023).Goh, K.-I., Salvi, G., Kahng, B. & Kim, D. Skeleton and fractal scaling in complex networks. Phys. Rev. Lett. 96 (2006).Kim, J. S., Goh, K.-I., Kahng, B. & Kim, D. Fractality and self-similarity in scale-free networks. New J. Phys. 9 (2007).Fronczak, A. Scaling theory of fractal complex networks. Sci. Rep. (2024).Song, C., Havlin, S. & Makse, H. A. Origins of fractality in the growth of complex networks. Nat. Phys. 2 (2006).Rozenfeld, H. D., Song, C. & Makse, H. A. Small-world to fractal transition in complex networks: a renormalization group approach. Phys. Rev. Lett. 104 (2010).Newman, M. & Watts, D. Renormalization group analysis of the small-world network model. Phys. Lett. A 263 (1999).Kim, B. J. Geographical coarse graining of complex networks. Phys. Rev. Lett. 93 (2004).Gfeller, D. & Los Rios, P. Spectral coarse graining of complex networks. Phys. Rev. Lett. 99 (2007).Wang, Y., Zeng, A., Di, Z. & Fan, Y. Spectral coarse graining for random walks in bipartite networks. Chaos 23 (2013).Gfeller, D. & Los Rios, P. Spectral coarse graining and synchronization in oscillator networks. Phys. Rev. Lett. 100 (2008).Chen, J., an Lu, J., Lu, X., Wu, X. & Chen, G. Spectral coarse graining of complex clustered networks. Commun. Nonlinear Sci. Numer. Simul. 18 (2013).Jia, Z., Zeng, L., Wang, Y.-Y. & Wang, P. Optimization algorithms for spectral coarse-graining of complex networks. Physica A 514 (2019).Zeng, A. & Lü, L. Coarse graining for synchronization in directed networks. Phys. Rev. E 83 (2011).Wang, P. & Xu, S. Spectral coarse grained controllability of complex networks. Physica A 478 (2017).Aygün, E. & Erzan, A. Spectral renormalization group theory on networks. J. Phys. Conf. Ser. 319 (2011).Tuncer, A. & Erzan, A. Spectral renormalization group for the Gaussian model and $Psi$4 theory on nonspatial networks. Phys. Rev. E 92 (2015).Villegas, P., Gili, T., Caldarelli, G. & Gabrielli, A. Laplacian renormalization group for heterogeneous networks. Nat. Phys. 19 (2023).Chen, H., Hou, Z., Xin, H. & Yan, Y. Statistically consistent coarse-grained simulations for critical phenomena in complex networks. Phys. Rev. E 82 (2010).Long, Y.-S., Jia, Z. & Wang, Y.-Y. Coarse graining method based on generalized degree in complex network. Physica A 505 (2018).Wang, Y. Coarse graining method based on node similarity in complex network. Commun. Netw. 10 (2018).Lorrain, F. & White, H. C. Structural equivalence of individuals in social networks. J. Math. Sociol. 1 (1971).Dunne, J. A. Food webs. In textit{Encyclopedia of Complexity and Systems Science (ed. Meyers, R.) 3661–3682 (Springer, 2009).Itzkovitz, S. Coarse-graining and self-dissimilarity of complex networks. Phys. Rev. E 71 (2005).Serrano, M. Á., Krioukov, D. & Boguñá, M. Self-similarity of complex networks and hidden metric spaces. Phys. Rev. Lett. 100 (2008).Alvarez-Hamelin, J., Dall’Asta, L., Barrat, A. & Vespignani, A. K-core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases. Netw. Heterog. Media 3 (2008).Lambiotte, R. Multi-scale modularity in complex networks. In textit{8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks 546–553 (IEEE, 2010).Karypis, G. & Kumar, V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20 (1998).Abou-Rjeili, A. & Karypis, G. Multilevel algorithms for partitioning power-law graphs. In textit{Proc. 20th IEEE International Parallel & Distributed Processing Symposium (IEEE, 2006).Leifer, I., Phillips, D., Sorrentino, F. & Makse, H. A. Symmetry-driven network reconstruction through pseudobalanced coloring optimization. J. Stat. Mech. 2022 (2022).Boldi, P. & Vigna, S. Fibrations of graphs. Discrete Math. 243 (2002).Cardelli, L., Tribastone, M., Tschaikowski, M. & Vandin, A. Maximal aggregation of polynomial dynamical systems. Proc. Natl Acad. Sci. USA 114 (2017).Cardelli, L., Tribastone, M., Tschaikowski, M. & Vandin, A. Erode: a tool for the evaluation and reduction of ordinary differential equations. In textit{Proc. Tools and Algorithms for the Construction and Analysis of Systems: 23rd International Conference, TACAS 2017 Part II 23, 310–328 (Springer, 2017).Argyris, G. A., Lluch Lafuente, A., Tribastone, M., Tschaikowski, M. & Vandin, A. Reducing Boolean networks with backward equivalence. BMC Bioinformatics 24 (2023).Morone, F., Leifer, I. & Makse, H. A. Fibration symmetries uncover the building blocks of biological networks. Proc. Natl Acad. Sci. USA 117 (2020).Gili, T. et al. Fibration symmetry-breaking supports functional transitions in a brain network engaged in language. Preprint at arXiv (2024).Papadopoulos, F., Psounis, K. & Govindan, R. Performance preserving topological downscaling of internet-like networks. IEEE J. Sel. Areas Commun. 24 (2006).Papadopoulos, F. & Psounis, K. Efficient identification of uncongested internet links for topology downscaling. SIGCOMM Comput. Commun. Rev. 37 (2007).Di, X., Zhao, Y., Huang, S. & Liu, H. X. A similitude theory for modeling traffic flow dynamics. IEEE Trans. Intell. Transp. Syst. 20 (2019).Chen, H., Perozzi, B., Hu, Y. & Skiena, S. HARP: hierarchical representation learning for networks. In textit{Proc. 32nd AAAI Conference on Artificial Intelligence/30th Innovative Applications of Artificial Intelligence Conference/8th AAAI Symposium on Educational Advances in Artificial Intelligence (AAAI’18/IAAI’18/EAAI’18) 2127–2134 (AAAI, 2018).Loukas, A. Graph reduction with spectral and cut guarantees. J. Mach. Learn. Res. 20 (2019).Jin, Y., Loukas, A. & JaJa, J. Graph coarsening with preserved spectral properties. In textit{Proc. International Conference on Artificial Intelligence and Statistics 4452–4462 (PMLR, 2020).Fahrbach, M., Goranci, G., Peng, R., Sachdeva, S. & Wang, C. Faster graph embeddings via coarsening. In textit{Proc. International Conference on Machine Learning 2953–2963 (PMLR, 2020).Liang, J., Gurukar, S. & Parthasarathy, S. MILE: A multi-level framework for scalable graph embedding. In textit{Proc. International AAAI Conference on Web and Social Media Vol. 15, 361–372 (AAAI, 2021).Huang, Z., Zhang, S., Xi, C., Liu, T. & Zhou, M. Scaling up graph neural networks via graph coarsening. In textit{Proc. 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining 675–684 (ACM, 2021).Zhang, Z., Ghavasieh, A., Zhang, J. & De Domenico, M. Coarse-graining network flow through statistical physics and machine learning. Nat. Commun. 16 (2025).Yedidia, J. S. & Bouchaud, J.-P. Renormalization group approach to error-correcting codes. J. Phys. A 36 (2003).Klein, B. & Hoel, E. The emergence of informative higher scales in complex networks. Complexity 2020 (2020).Faccin, M., Schaub, M. T. & Delvenne, J.-C. Entrograms and coarse graining of dynamics on complex networks. J. Complex Netw. 6 (2017).Boguñá, M. Network geometry. Nat. Rev. Phys. 3 (2021).García-Pérez, G., Boguñá, M. & Serrano, M. Á. Multiscale unfolding of real networks by geometric renormalization. Nat. Phys. 14 (2018).Zheng, M., García-Pérez, G., Boguñá, M. & Serrano, M. Á. Scaling up real networks by geometric branching growth. Proc. Natl Acad. Sci. USA (2021).Zheng, M., García-Pérez, G., Boguñá, M. & Serrano, M. Á. Geometric renormalization of weighted networks. Commun. Phys. 7 (2024).Kolk, J., Serrano, M. & Boguñá, M. Renormalization of networks with weak geometric coupling. Phys. Rev. E 110 (2024).Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A. & Boguñá, M. Hyperbolic geometry of complex networks. Phys. Rev. E 82 (2010).Gilbert, E. N. Random plane networks. J. Soc. Indust. Appl. Math. 9 (1961).Penrose, M. Random Geometric Graphs Vol. 5 (Oxford Univ. Press, 2003).Hoff, P. D., Raftery, A. E. & Handcock, M. S. Latent space approaches to social network analysis. J. Am. Stat. Assoc. 97 (2002).Boguñá, M., Krioukov, D., Almagro, P. & Serrano, M. Á. Small worlds and clustering in spatial networks. Phys. Rev. Res. 2 (2020).Kolk, J., Serrano, M. Á. & Boguñá, M. An anomalous topological phase transition in spatial random graphs. Commun. Phys. 5 (2022).Kolk, J., Serrano, M. Á. & Boguñá, M. Random graphs and real networks with weak geometric coupling. Phys. Rev. Res. 6 (2024).García-Pérez, G., Allard, A., Serrano, M. Á. & Boguñá, M. Mercator: uncovering faithful hyperbolic embeddings of complex networks. New J. Phys. 21 (2019).Jankowski, R., Allard, A., Boguñá, M. & Serrano, M. Á. The D-Mercator method for the multidimensional hyperbolic embedding of real networks. Nat. Commun. 14 (2023).Boguñá, M., Papadopoulos, F. & Krioukov, D. Sustaining the internet with hyperbolic mapping. Nat. Commun. 1 (2010).Gugelmann, L., Panagiotou, K. & Peter, U. Random hyperbolic graphs: degree sequence and clustering. In textit{Proc. Automata, Languages and Programming, 39th International Colloquium (ICALP 2012) (eds Czumaj, A. et al.) 573–585 (Springer, 2012).Candellero, E. & Fountoulakis, N. Clustering and the hyperbolic geometry of complex networks. Internet Math. 12 (2016).Fountoulakis, N., Hoorn, P., Müller, T. & Schepers, M. Clustering in a hyperbolic model of complex networks. Electron. J. Probab. 26 (2021).Abdullah, M. A., Fountoulakis, N. & Bode, M. Typical distances in a geometric model for complex networks. Internet Math. (2017).Friedrich, T. & Krohmer, A. On the diameter of hyperbolic random graphs. SIAM J. Discrete Math. 32 (2018).Müller, T. & Staps, M. The diameter of KPKVB random graphs. Adv. Appl. Probab. 51 (2019).Serrano, M. Á., Krioukov, D. & Boguñá, M. Percolation in self-similar networks. Phys. Rev. Lett. 106 (2011).Fountoulakis, N. & Müller, T. Law of large numbers for the largest component in a hyperbolic model of complex networks. Ann. Appl. Probab. 28 (2018).Bianconi, G. & Ziff, R. Topological percolation on hyperbolic simplicial complexes. Phys. Rev. E 98 (2018).Kiwi, M. & Mitsche, D. Spectral gap of random hyperbolic graphs and related parameters. Ann. Appl. Probab. 28 (2018).Papadopoulos, F., Kitsak, M., Serrano, M. Á., Boguñá, M. & Krioukov, D. Popularity versus similarity in growing networks. Nature 489 (2012).Allard, A., Serrano, M. Á., García-Pérez, G. & Boguñá, M. The geometric nature of weights in real complex networks. Nat. Commun. 8 (2017).Serrano, M. Á., Boguñá, M. & Sagués, F. Uncovering the hidden geometry behind metabolic networks. Mol. Biosyst. 8 (2012).Kitsak, M., Papadopoulos, F. & Krioukov, D. Latent geometry of bipartite networks. Phys. Rev. E 95 (2017).Budel, G. & Kitsak, M. Complementarity in complex networks. Preprint at arXiv (2023).Kleineberg, K.-K., Boguñá, M., Serrano, M. Á. & Papadopoulos, F. Hidden geometric correlations in real multiplex networks. Nat. Phys. 12 (2016).Kleineberg, K.-K., Buzna, L., Papadopoulos, F., Boguñá, M. & Serrano, M. Á. Geometric correlations mitigate the extreme vulnerability of multiplex networks against targeted attacks. Phys. Rev. Lett. 118 (2017).Zuev, K., Boguñá, M., Bianconi, G. & Krioukov, D. Emergence of soft communities from geometric preferential attachment. Sci. Rep. 5 (2015).García-Pérez, G., Serrano, M. Á. & Boguñá, M. Soft communities in similarity space. J. Stat. Phys. 173 (2018).Muscoloni, A. & Cannistraci, C. V. A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate realistic complex networks with communities. New J. Phys. 20 (2018).Allard, A., Serrano, M. Á. & Boguñá, M. Geometric description of clustering in directed networks. Nat. Phys. 20 (2024).Aliakbarisani, R., Ángeles Serrano, M. & Boguñá, M. Feature-enriched hyperbolic network geometry. Preprint at arXiv (2023).Zheng, M., Allard, A., Hagmann, P., Alemán-Gómez, Y. & Serrano, M. Á. Geometric renormalization unravels self-similarity of the multiscale human connectome. Proc. Natl Acad. Sci. USA 117 (2020).Barrat, A., Barthelemy, M., Pastor-Satorras, R. & Vespignani, A. The architecture of complex weighted networks. Proc. Natl Acad. Sci. USA 101 (2004).Serrano, M. Á., Boguñá, M. & Pastor-Satorras, R. Correlations in weighted networks. Phys. Rev. E 74 (2006).Nolan, J. P. Univariate Stable Distributions: Models for Heavy Tailed Data (Springer Nature, 2019).Caldarelli, G., Gabrielli, A., Gili, T. & Villegas, P. Laplacian renormalization group: an introduction to heterogeneous coarse-graining. J. Stat. Mech. 2024 (2024).Domenico, M. & Biamonte, J. Spectral entropies as information-theoretic tools for complex network comparison. Phys. Rev. X 6 (2016).Masuda, N., Porter, M. A. & Lambiotte, R. Random walks and diffusion on networks. Phys. Rep. 716 (2017).Kadanoff, L. P. Notes on Migdal’s recursion formulas. Ann. Phys. 100 (1976).Migdal, A. A. Phase transitions in gauge and spin-lattice systems. Zh. Eksp. Teor. Fiz. 69 (1975).Wilson, K. G. & Kogut, J. The renormalization group and the $$varepsilo$$ expansion. Phys. Rep. 12 (1974).Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2010).Moretti, P. & Zaiser, M. Network analysis predicts failure of materials and structures. Proc. Natl Acad. Sci. USA 116 (2019).Burioni, R. & Cassi, D. Random walks on graphs: ideas, techniques and results. J. Phys. A 38 (2005).Villegas, P., Gabrielli, A., Poggialini, A. & Gili, T. Multi-scale Laplacian community detection in heterogeneous networks. Phys. Rev. Res. 7 (2025).Kadanoff, L. P. Scaling laws for Ising models near Tc. Phys. Phys. Fiz. 2 (1966).Wilson, K. G. Problems in physics with many scales of length. Sci. Am. 241 (1979).Hinrichsen, H. Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49 (2000).Dornic, I., Chaté, H. & Muñoz, M. A. Integration of Langevin equations with multiplicative noise and the viability of field theories for absorbing phase transitions. Phys. Rev. Lett. 94 (2005).Burioni, R. & Cassi, D. Geometrical universality in vibrational dynamics. Mod. Phys. Lett. B 11 (1997).Cassi, D. Phase transitions and random walks on graphs: a generalization of the Mermin–Wagner theorem to disordered lattices, fractals, and other discrete structures. Phys. Rev. Lett. 68 (1992).Reitz, M. & Bianconi, G. The higher-order spectrum of simplicial complexes: a renormalization group approach. J. Phys. A 53 (2020).Bianconi, G. & Dorogovstev, S. N. The spectral dimension of simplicial complexes: a renormalization group theory. J. Stat. Mech. 2020 (2020).Nurisso, M. et al. Higher-order Laplacian renormalization. Nat. Phys. (2025).Cheng, A., Xu, Y., Sun, P. & Tian, Y. A simplex path integral and a simplex renormalization group for high-order interactions. Rep. Prog. Phys. 87 (2024).Ghavasieh, A., Nicolini, C. & Domenico, M. Statistical physics of complex information dynamics. Phys. Rev. E 102 (2020).Villegas, P., Gabrielli, A., Santucci, F., Caldarelli, G. & Gili, T. Laplacian paths in complex networks: information core emerges from entropic transitions. Phys. Rev. Res. 4 (2022).Binney, J. J., Dowrick, N. J., Fisher , A. J. & Newman, M. E. The Theory of Critical Phenomena: An Introduction to the Renormalization Group (Oxford Univ. Press, 1992).Pathria, R. K. & Beale, P. D. Statistical Mechanics (Elsevier/Academic, 2011).Holland, P. W., Laskey, K. B. & Leinhardt, S. Stochastic blockmodels: first steps. Soc. Networks 5 (1983).Burioni, R. & Cassi, D. Universal properties of spectral dimension. Phys. Rev. Lett. 76 (1996).Moretti, P. & Muñoz, M. A. Griffiths phases and the stretching of criticality in brain networks. Nat. Commun. 4 (2013).Poggialini, A., Villegas, P., Muñoz, M. A. & Gabrielli, A. Networks with many structural scales: a renormalization group perspective. Phys. Rev. Lett. 134 (2024).de C. Loures, M., Piovesana, A. A. & Brum, J. A. Laplacian coarse graining in complex networks. Preprint at arXiv (2023).Garuccio, E., Lalli, M. & Garlaschelli, D. Multiscale network renormalization: scale-invariance without geometry. Phys. Rev. Res. 5 (2023).Avena, L., Garlaschelli, D., Hazra, R. S. & Lalli, M. Inhomogeneous random graphs with infinite-mean fitness variables. Preprint at arXiv (2022).Lalli, M. & Garlaschelli, D. Geometry-free renormalization of directed networks: scale-invariance and reciprocity. Preprint at arXiv (2024).Uchaikin, V. V. & Zolotarev, V. M. Chance and Stability: Stable Distributions and their Applications (Walter de Gruyter, 2011).Samorodnitsky, G. & Taqqu, M. S. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance (Chapman & Hall, 1994).Lévy, P. L’addition des variables aléatoires définies sur une circonférence. Bull. Soc. Math. Fr. 67 (1939).Balkema, A. A. & Resnick, S. I. Max-infinite divisibility. J. Appl. Probab. 14 (1977).Giné, E., Hahn, M. G. & Vatan, P. Max-infinitely divisible and max-stable sample continuous processes. Probab. Theory Relat. Fields 87 (1990).Verteletskyi, V. Renormalization of Networks with Weighted Links. MSc thesis, Leiden Univ. (2022).Garlaschelli, D. & Loffredo, M. I. Patterns of link reciprocity in directed networks. Phys. Rev. Lett. 93 (2004).Garlaschelli, D. & Loffredo, M. I. Multispecies grand-canonical models for networks with reciprocity. Phys. Rev. E 73 (2006).Squartini, T., Picciolo, F., Ruzzenenti, F. & Garlaschelli, D. Reciprocity of weighted networks. Sci. Rep. 3 (2013).Gallo, A., Saracco, F., Lambiotte, R., Garlaschelli, D. & Squartini, T. Patterns of link reciprocity in directed, signed networks. Phys. Rev. E 111 (2025).Ialongo, L. N., Bangma, S., Jansen, F. & Garlaschelli, D. Multi-scale reconstruction of large supply networks. Preprint at arXiv (2024).Milocco, R., Jansen, F. & Garlaschelli, D. Multi-scale node embeddings for graph modeling and generation. Preprint at arXiv (2024).Caldarelli, G., Capocci, A., Los Rios, P. & Munoz, M. A. Scale-free networks from varying vertex intrinsic fitness. Phys. Rev. Lett. 89 (2002).Dehghan-Kooshkghazi, A., Kamiński, B., Kraiński, Ł., Prałat, P. & Théberge, F. Evaluating node embeddings of complex networks. J. Complex Netw. 10 (2022).van der Hofstad, R. Random Graphs and Complex Networks (Cambridge Univ. Press, 2024).Hattori, K., Hattori, T. & Watanabe, H. Gaussian field theories on general networks and the spectral dimensions. Prog. Theor. Phys. Suppl. 92 (1987).Burioni, R. & Cassi, D. Random walks on graphs: ideas, techniques and results. J. Phys. A 38 (2005).Boettcher, S. & Brunson, C. T. Renormalization group for critical phenomena in complex networks. Front. Physiol. 2 (2011).Dorogovtsev, S. N. Renormalization group for evolving networks. Phys. Rev. E 67 (2003).Meshulam, L., Gauthier, J. L., Brody, C. D., Tank, D. W. & Bialek, W. Coarse graining, fixed points, and scaling in a large population of neurons. Phys. Rev. Lett. 123 (2019).Griffiths, R. B. Nonanalytic behavior above the critical point in a random Ising ferromagnet. Phys. Rev. Lett. 23 (1969).Munoz, M. A., Juhász, R., Castellano, C. & Ódor, G. Griffiths phases on complex networks. Phys. Rev. Lett. 105 (2010).Amari, S.-i. Information Geometry and Its Applications (Springer, 2016).Berman, D. S., Klinger, M. S. & Stapleton, A. G. Bayesian renormalization. Mach. Learn. Sci. Tech. 4 (2023).Raju, A., Machta, B. B. & Sethna, J. P. Information loss under coarse graining: a geometric approach. Phys. Rev. E 98 (2018).Machta, B. B., Chachra, R., Transtrum, M. K. & Sethna, J. P. Parameter space compression underlies emergent theories and predictive models. Science 342 (2013).Har-Shemesh, O., Quax, R., Hoekstra, A. G. & Sloot, P. M. A. Information geometric analysis of phase transitions in complex patterns: the case of the Gray-Scott reaction–diffusion model. J. Stat. Mech. 4 (2016).Ehrenfest, P. & Ehrenfest, T. Begriffliche Grundlagen der statistischen Auffassung in der Mechanik (Springer, 1907).Niemeijer, T. & Leeuwen, J. M. J. Wilson theory for spin systems on a triangular lattice. Phys. Rev. Lett. 31 (1973).Kadanoff, L. P. Variational principles and approximate renormalization group calculations. Phys. Rev. Lett. 34 (1975).Southern, B. W. Kadanoff’s variational renormalisation group method: the Ising model on the square and triangular lattices. J. Phys. A 11 (1978).Jan, N. & Glazer, A. Kadanoff’s approximate renormalization group transformation applied to the triangular Ising lattice. Physica A 91 (1978).Nijs, M. & Knops, H. Variational renormalization method and the Potts model. Physica A 93 (1978).Castro, C. & Jona-Lasinio, G. On the microscopic foundation of scaling laws. Phys. Lett. A 29 (1969).Gell-Mann, M. & Low, F. E. Quantum electrodynamics at small distances. Phys. Rev. 95 (1954).Zinn-Justin, J. Quantum Field Theory and Critical Phenomena (Oxford Univ. Press, 2021).Amit, D. J. & Martin-Mayor, V. Field Theory, the Renormalization Group and Critical Phenomena (World Scientific, 2005).Täuber, U. C. Renormalization group: applications in statistical physics. Nucl. Phys. B 228 (2012).Pelissetto, A. & Vicari, E. Critical phenomena and renormalization-group theory. Phys. Rep. 368 (2002).Efrati, E., Wang, Z., Kolan, A. & Kadanoff, L. P. Real-space renormalization in statistical mechanics. Rev. Mod. Phys. 86 (2014).Gefen, Y., Mandelbrot, B. B. & Aharony, A. Critical phenomena on fractal lattices. Phys. Rev. Lett. 45 (1980).Gefen, Y., Aharony, A., Mandelbrot, B. B. & Kirkpatrick, S. Solvable fractal family, and its possible relation to the backbone at percolation. Phys. Rev. Lett. 47 (1981).Phani, M. K. & Dhar, D. Real-space renormalisation group: application to directed percolation. J. Phys. C 15 (1982).Gefen, Y., Aharony, A. & Mandelbrot, B. B. Phase transitions on fractals. I. Quasi-linear lattices. J. Phys. A 16 (1983).Gefen, Y., Aharony, A., Shapir, Y. & Mandelbrot, B. B. Phase transitions on fractals. II. Sierpinski gaskets. J. Phys. A 17 (1984).Gefen, Y., Aharony, A. & Mandelbrot, B. B. Phase transitions on fractals. III. Infinitely ramified lattices. J. Phys. A 17 (1984).Das, D., Dey, S., Jacobsen, J. L. & Dhar, D. Critical behavior of loops and biconnected clusters on fractals of dimension d < 2. J. Phys. A 41 (2008).Della Morte, M. & Sannino, F. Renormalization group approach to pandemics as a time-dependent SIR model. Front. Phys. (2021).Cavagna, A. Dynamic scaling in natural swarms. Nat. Phys. 13 (2017).Cavagna, A. Dynamical renormalization group approach to the collective behavior of swarms. Phys. Rev. Lett. (2019).Cavagna, A. Natural swarms in 3.99 dimensions. Nat. Phys. 19 (2023).Koch-Janusz, M. & Ringel, Z. Mutual information, neural networks and the renormalization group. Nat. Phys. 14 (2018).Li, S.-H. & Wang, L. Neural network renormalization group. Phys. Rev. Lett. (2018).Hu, H.-Y., Li, S.-H., Wang, L. & You, Y.-Z. Machine learning holographic mapping by neural network renormalization group. Phys. Rev. Res. 2 (2020).Caso, F., Trappolini, G., Bacciu, A., Liò, P. & Silvestri, F. Renormalized graph neural networks. Preprint at arXiv (2023).Young, A. P. & Stinchcombe, R. B. A renormalization group theory for percolation problems. J. Phys. C 8 (1975).Reynolds, P. J., Stanley, H. E. & Klein, W. A real-space renormalization group for site and bond percolation. J. Phys. C 10 (1977).Galam, S. Real space renormalization group and totalitarian paradox of majority rule voting. Physica A 285 (2000).Kogan, O., Rogers, J. L., Cross, M. C. & Refael, G. Renormalization group approach to oscillator synchronization. Phys. Rev. E 80 (2009).Östborn, P. Renormalization of oscillator lattices with disorder. Phys. Rev. E 79 (2009).Garlaschelli, D., Hollander, F., Meylahn, J. & Zeegers, B. Synchronization of phase oscillators on the hierarchical lattice. J. Stat. Phys. 174 (2019).Levin, M. & Nave, C. P. Tensor renormalization group approach to two-dimensional classical lattice models. Phys. Rev. Lett. (2007).Evenbly, G. & Vidal, G. Tensor network renormalization. Phys. Rev. Lett. (2015).Bal, M., Mariën, M., Haegeman, J. & Verstraete, F. Renormalization group flows of Hamiltonians using tensor networks. Phys. Rev. Lett. (2017).Lenggenhager, P. M., Gökmen, D. E., Ringel, Z., Huber, S. D. & Koch-Janusz, M. Optimal renormalization group transformation from information theory. Phys. Rev. X 10 (2020).Gökmen, D. E., Ringel, Z., Huber, S. D. & Koch-Janusz, M. Statistical physics through the lens of real-space mutual information. Phys. Rev. Lett. 127 (2021).Gordon, A., Banerjee, A., Koch-Janusz, M. & Ringel, Z. Relevance in the renormalization group and in information theory. Phys. Rev. Lett. 126 (2021).Sarra, L., Aiello, A. & Marquardt, F. Renormalized mutual information for artificial scientific discovery. Phys. Rev. Lett. 126 (2021).Gökmen, D. E., Ringel, Z., Huber, S. D. & Koch-Janusz, M. Symmetries and phase diagrams with real-space mutual information neural estimation. Phys. Rev. E 104 (2021).Canet, L., Delamotte, B., Deloubrière, O. & Wschebor, N. Nonperturbative renormalization-group study of reaction–diffusion processes. Phys. Rev. Lett. 92 (2004).Canet, L., Chaté, H. & Delamotte, B. Quantitative phase diagrams of branching and annihilating random walks. Phys. Rev. Lett. 92 (2004).Canet, L., Chaté, H., Delamotte, B., Dornic, I. & Muñoz, M. A. Nonperturbative fixed point in a nonequilibrium phase transition. Phys. Rev. Lett. 95 (2005).Canet, L., Chaté, H. & Delamotte, B. General framework of the non-perturbative renormalization group for non-equilibrium steady states. J. Phys. A 44 (2011).Tarpin, M., Benitez, F., Canet, L. & Wschebor, N. Nonperturbative renormalization group for the diffusive epidemic process. Phys. Rev. E 96 (2017).