MarkTechPost@AI 21小时前
Building AI-Powered Applications Using the Plan → Files → Code Workflow in TinyDev
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

TinyDev是一个轻量级的AI代码生成工具,它利用Gemini API,将简单的应用创意转化为结构化的应用程序。该工具采用清晰的三阶段工作流程:规划、文件、代码,确保代码的一致性、功能性和模块化设计。用户只需用自然语言描述项目,TinyDev就能生成可直接运行的代码文件,并自动保存到有组织的目录中。这使得TinyDev成为快速原型设计或学习AI辅助开发任务的理想起点。

💡 TinyDev的核心是基于Gemini API的AI代码生成器,它接受用户提供的自然语言描述,并将其转化为可运行的代码。

⚙️ TinyDev遵循三阶段工作流程:首先,通过'plan'阶段生成项目计划和共享依赖项,为后续代码生成奠定基础; 其次,'specify_file_paths'阶段确定需要创建的文件; 最后,'generate_code_sync'阶段为每个文件生成功能性代码。

📁 TinyDev支持多种类型的项目,如Web界面、Python后端或实用脚本。它会自动生成代码文件,并将其保存在一个有组织的目录中,方便用户使用。

✅ TinyDev生成的代码力求功能完整,确保所有导入、变量引用和函数调用都正确无误,代码在语法和逻辑上均正确。它旨在为用户提供一个完整的、可以直接使用的应用程序框架。

In this tutorial, we introduce TinyDev class implementation, a minimal yet powerful AI code generation tool that utilizes the Gemini API to transform simple app ideas into comprehensive, structured applications. Designed to run effortlessly in Notebook, TinyDev follows a clean three-phase workflow—Plan → Files → Code—to ensure consistency, functionality, and modular design. Whether building a web interface, a Python backend, or a utility script, TinyDev allows users to describe their project in natural language & receive ready-to-run code files, automatically generated and saved in an organized directory. This makes it an ideal starting point for rapid prototyping or learning how AI can assist in development tasks.

import google.generativeai as genaiimport osimport jsonimport refrom pathlib import Pathfrom typing import List, Dict

We begin by importing essential libraries required for the TinyDev code generator. google.generativeai is used to interact with the Gemini API, while standard libraries like os, json, and re support file handling and text processing. Path and type hints from typing ensure clean file operations and better code readability.

class TinyDev:   """   TinyDev: A lightweight AI code generator inspired by smol-dev   Uses Gemini API to generate complete applications from simple prompts   Follows the proven three-phase workflow: Plan → Files → Code   """     def __init__(self, api_key: str, model: str = "gemini-1.5-flash"):       genai.configure(api_key=api_key)       self.model = genai.GenerativeModel(model)       self.generation_config = {           'temperature': 0.1,           'top_p': 0.8,           'max_output_tokens': 8192,       }     def plan(self, prompt: str) -> str:       """       Phase 1: Generate project plan and shared dependencies       Creates the foundation for consistent code generation       """       planning_prompt = f"""As an AI developer, you’re building a tool that automatically generates code tailored to the user’s needs.the program you are writing is based on the following description:{prompt}the files we write will be generated by a python script. the goal is for us to all work together to write a program that will write the code for the user.since we are working together, we need to understand what our shared dependencies are. this includes:- import statements we all need to use- variable names that are shared between files- functions that are called from one file to another- any other shared statethis is the most critical part of the process, if we don't get this right, the generated code will not work properly.please output a markdown file called shared_dependencies.md that lists all of the shared dependencies.the dependencies should be organized as:1. shared variables (globals, constants)2. shared functions (function signatures)3. shared classes (class names and key methods)4. shared imports (modules to import)5. shared DOM element ids (if web project)6. shared file paths/namesbe EXHAUSTIVE in your analysis. every file must be able to import or reference these shared items."""       response = self.model.generate_content(           planning_prompt,           generation_config=self.generation_config       )       return response.text   def specify_file_paths(self, prompt: str, shared_deps: str) -> List[str]:       """       Phase 2: Determine what files need to be created       """       files_prompt = f"""As an AI developer, you’re building a tool that automatically generates code tailored to the user’s needs.the program:{prompt}the shared dependencies:{shared_deps}Based on the program description and shared dependencies, return a JSON array of the filenames that should be written.Only return the JSON array, nothing else. The JSON should be an array of strings representing file paths.For example, for a simple web app you might return:["index.html", "styles.css", "script.js"]For a Python project you might return:["main.py", "utils.py", "config.py", "requirements.txt"]JSON array:"""       response = self.model.generate_content(           files_prompt,           generation_config=self.generation_config       )             try:           json_match = re.search(r'\[.*?\]', response.text, re.DOTALL)           if json_match:               files = json.loads(json_match.group())               return [f for f in files if isinstance(f, str)]           else:               lines = [line.strip() for line in response.text.split('\n') if line.strip()]               files = []               for line in lines:                   if '.' in line and not line.startswith('#'):                       file = re.sub(r'[^\w\-_./]', '', line)                       if file:                           files.append(file)               return files[:10]        except Exception as e:           print(f"Error parsing files: {e}")           return ["main.py", "README.md"]   def generate_code_sync(self, prompt: str, shared_deps: str, filename: str) -> str:       """       Phase 3: Generate code for individual files       """       code_prompt = f"""As an AI developer, you’re building a tool that automatically generates code tailored to the user’s needs..the program:{prompt}the shared dependencies:{shared_deps}Please write the file {filename}.Remember that your job is to write the code for {filename} ONLY. Do not write any other files.the code should be fully functional. meaning:- all imports should be correct- all variable references should be correct - all function calls should be correct- the code should be syntactically correct- the code should be logically correctMake sure to implement every part of the functionality described in the program description.DO NOT include ``` code fences in your response. Return only the raw code.Here is the code for {filename}:"""       response = self.model.generate_content(           code_prompt,           generation_config=self.generation_config       )             code = response.text       code = re.sub(r'^```[\w]*\n', '', code, flags=re.MULTILINE)       code = re.sub(r'\n```$', '', code, flags=re.MULTILINE)             return code.strip()   def create_app(self, prompt: str, output_dir: str = "/content/generated_app") -> Dict:       """       Main workflow: Transform a simple prompt into a complete application       """       print(f" TinyDev workflow starting...")       print(f" Prompt: {prompt}")             print("\n Step 1: Planning shared dependencies...")       shared_deps = self.plan(prompt)       print(" Dependencies planned")             print("\n Step 2: Determining file structure...")       file_paths = self.specify_file_paths(prompt, shared_deps)       print(f" Files to generate: {file_paths}")             Path(output_dir).mkdir(parents=True, exist_ok=True)             print(f"\n Step 3: Generating {len(file_paths)} files...")       results = {           'prompt': prompt,           'shared_deps': shared_deps,           'files': {},           'output_dir': output_dir       }             with open(Path(output_dir) / "shared_dependencies.md", 'w') as f:           f.write(shared_deps)             for filename in file_paths:           print(f"   Generating {filename}...")           try:               code = self.generate_code_sync(prompt, shared_deps, filename)                             file_path = Path(output_dir) / filename               file_path.parent.mkdir(parents=True, exist_ok=True)                             with open(file_path, 'w', encoding='utf-8') as f:                   f.write(code)                             results['files'][filename] = code               print(f"   {filename} created ({len(code)} chars)")                         except Exception as e:               print(f"   Error generating {filename}: {e}")               results['files'][filename] = f"# Error: {e}"             readme = f"""# Generated by TinyDev (Gemini-Powered)## Original Prompt{prompt}## Generated Files{chr(10).join(f'- {f}' for f in file_paths)}## About TinyDevTinyDev is inspired by smol-ai/developer but uses free Gemini API.It follows the proven three-phase workflow: Plan → Files → Code## UsageCheck individual files for specific usage instructions.Generated on: {os.popen('date').read().strip()}"""             with open(Path(output_dir) / "README.md", 'w') as f:           f.write(readme)             print(f"\n Complete! Generated {len(results['files'])} files in {output_dir}")       return results

The TinyDev class encapsulates the full logic of an AI-powered code generator using the Gemini API. It implements a structured three-phase workflow: first, it analyzes the user prompt to generate shared dependencies (plan); next, it identifies which files are needed for the application (specify_file_paths); and finally, it generates functional code for each file individually (generate_code_sync). The create_app method brings everything together by orchestrating the full app generation pipeline and saving the results, including code files and a detailed README, into a specified output directory, offering a complete, ready-to-use application scaffold from a single prompt.

def demo_tinydev():   """Demo the TinyDev code generator"""     api_key = "Use Your API Key here"     if api_key == "YOUR_GEMINI_API_KEY_HERE":       print(" Please set your Gemini API key!")       print("Get one free at: https://makersuite.google.com/app/apikey")       return None     tiny_dev = TinyDev(api_key)     demo_prompts = [       "a simple HTML/JS/CSS tic tac toe game",       "a Python web scraper that gets the latest news from multiple sources",       "a responsive landing page for a local coffee shop with contact form",       "a Flask REST API for managing a todo list",       "a JavaScript calculator with a modern UI"   ]     print(" TinyDev - AI Code Generator")   print("=" * 50)   print("Inspired by smol-ai/developer, powered by Gemini API")   print(f"Available demo projects:")     for i, prompt in enumerate(demo_prompts, 1):       print(f"{i}. {prompt}")     demo_prompt = demo_prompts[0]    print(f"\n Running demo: {demo_prompt}")     try:       results = tiny_dev.create_app(demo_prompt)             print(f"\n Results Summary:")       print(f"   Prompt: {results['prompt']}")       print(f"   Output: {results['output_dir']}")       print(f"   Files: {len(results['files'])}")             print(f"\n Generated Files:")       for filename in results['files'].keys():           print(f"  - {filename}")             if results['files']:           preview_file = list(results['files'].keys())[0]           preview_code = results['files'][preview_file]           print(f"\n  Preview of {preview_file}:")           print("-" * 40)           print(preview_code[:400] + "..." if len(preview_code) > 400 else preview_code)           print("-" * 40)             print(f"\n This uses the same proven workflow as smol-ai/developer!")       print(f" Check {results['output_dir']} for all generated files")             return results         except Exception as e:       print(f" Demo failed: {e}")       return None

The demo_tinydev() function showcases TinyDev’s capabilities by running a predefined demo using one of several sample prompts, such as generating a Tic Tac Toe game or a Python news scraper. It initializes the TinyDev class with a Gemini API key, selects the first prompt from a list of project ideas, and guides the user through the full code generation pipeline, including planning shared dependencies, defining file structure, and generating code. After execution, it summarizes the output, previews a sample file, and points to the directory where the complete app has been saved.

def interactive_tinydev():   """Interactive version where you can try your own prompts"""   api_key = input(" Enter your Gemini API key: ").strip()     if not api_key:       print(" API key required!")       return     tiny_dev = TinyDev(api_key)     print("\n Interactive TinyDev Mode")   print("Type your app ideas and watch them come to life!")     while True:       prompt = input("\n Describe your app (or 'quit'): ").strip()             if prompt.lower() in ['quit', 'exit', 'q']:           print(" Goodbye!")           break             if prompt:           try:               results = tiny_dev.create_app(prompt, f"/content/app_{hash(prompt) % 10000}")               print(f" Success! Check {results['output_dir']}")           except Exception as e:               print(f" Error: {e}")print(" TinyDev - AI Code Generator Ready!")print("Inspired by smol-ai/developer, powered by free Gemini API")print("\nTo run demo: demo_tinydev()")print("To try interactive mode: interactive_tinydev()")

The interactive_tinydev() function allows users to generate applications from their custom prompts in real time. After entering a valid Gemini API key, users can describe any app idea, and TinyDev will develop the complete project, code, structure, and supporting files automatically. The process continues in a loop until the user types ‘quit’. This interactive mode enables hands-on experimentation and rapid prototyping from natural language descriptions.

Finally, calling demo_tinydev() runs a predefined demonstration of TinyDev using a sample app prompt. It walks through the full workflow, planning, file structure creation, and code generation, to showcase how the tool automatically builds a complete application from a simple idea.

In conclusion, TinyDev class demonstrates the potential of using AI to automate application scaffolding with remarkable accuracy and efficiency. By breaking down the code generation process into intuitive phases, it ensures that outputs are logically sound, well-structured, and aligned with the user’s intent. Whether you’re exploring new app ideas or seeking to accelerate development, TinyDev provides a lightweight and user-friendly solution powered by the Gemini models. It’s a practical tool for developers looking to integrate AI into their workflow without unnecessary complexity or overhead.


Check out the Notebook here. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

The post Building AI-Powered Applications Using the Plan → Files → Code Workflow in TinyDev appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

TinyDev AI代码生成 Gemini API 代码生成工具
相关文章