Eric Sloof - NTPRO.NL 06月11日 22:50
Bridging Cloud and Edge AI: VMware Meets Azure Machine Learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

VMware与Microsoft合作,通过Azure Arc和Tanzu Kubernetes Grid,将VMware Cloud Foundation (VCF)与Azure Machine Learning (AML)集成,为企业提供混合机器学习解决方案。该方案允许在Azure云端开发AI模型,并在本地VMware基础设施上运行,特别适用于对数据驻留、低延迟和本地投资有严格要求的行业。用户可以利用熟悉的VMware和Azure工具,构建GPU驱动的AI就绪基础设施,从而实现云端训练、本地部署,兼顾数据控制和创新。

🚀 混合部署是该方案的核心优势,用户可以在Azure云中训练AI模型,并在本地VMware Cloud Foundation环境中部署和运行,满足了对数据驻留、低延迟和本地投资有特定需求的企业。

🔒 数据控制是该方案的重要特性,企业可以将敏感数据保留在自己的数据中心,确保数据安全和合规性,这对于需要遵守严格数据隐私法规的行业至关重要。

🛠️ 方案使用熟悉的工具,用户可以利用现有的VMware和Azure工具,如vSphere、vSAN、NSX和Azure Machine Learning Studio,无需大幅度的学习成本,即可构建和管理AI环境。

⚙️ 方案的核心组件包括VMware Cloud Foundation、Azure Arc和Azure Machine Learning Arc Extension,它们共同构建了GPU驱动的AI就绪基础设施,支持可扩展的Kubernetes集群,从而实现高效的AI模型训练和推理。

In today’s AI-driven world, organizations face a tough challenge—how to leverage the power of cloud-based machine learning while keeping data secure and on-premises. A recent technical white paper from VMware and Microsoft offers an elegant solution: integrating VMware Cloud Foundation (VCF) with Azure Machine Learning (AML) using Azure Arc and Tanzu Kubernetes Grid.

What’s the Big Idea?

This integration enables hybrid machine learning deployments. That means businesses can develop AI models in Azure’s cloud and run them locally on their own infrastructure using VMware Cloud Foundation. It’s a game-changer for industries with strict data residency requirements, latency-sensitive applications, or heavy on-prem investments.

Why It Matters

• Hybrid Flexibility: Train in the cloud, deploy at the edge or on-prem.

• Data Control: Keep sensitive data in your own data centers.

• Familiar Tools: Leverage existing VMware and Azure tools without a steep learning curve.

• AI-Ready Infrastructure: GPU-powered environments with scalable Kubernetes clusters.

Under the Hood: Key Components

• VMware Cloud Foundation: The core platform, blending compute (vSphere), storage (vSAN), networking (NSX), and Kubernetes (Tanzu).

• Azure Arc: The glue that extends Azure services to your own servers.

• Azure Machine Learning Arc Extension: Brings training and inference capabilities into your local Kubernetes clusters.

How It Works

1. Set Up Your VMware Cloud Foundation Environment

• Deploy management and workload domains

• Configure NSX, vSAN, and Tanzu Kubernetes clusters

• Optionally deploy vSAN File Services for shared storage

2. Connect to Azure via Arc

• Register your on-prem Kubernetes cluster with Azure

• Deploy the AML Arc extension

3. Run ML Jobs Locally

• Define instance types for workloads

• Launch training and inference jobs directly from Azure Machine Learning Studio

• Monitor and manage as if it were native to Azure

 

Real-World Example

The paper walks through a practical scenario: training an image classification model using logistic regression on an on-prem cluster, fully managed through Azure Machine Learning Studio.

Who Should Care?

This solution is tailor-made for:

• Enterprises balancing cloud innovation with strict compliance

• CTOs and CIOs exploring AI in hybrid environments

• DevOps and infrastructure teams familiar with vSphere and Kubernetes

Final Thoughts

This integration isn’t just a technical feat—it’s a strategic enabler. By merging the reliability of VMware with the AI prowess of Azure, organizations can innovate faster, stay compliant, and get the most out of their data—whether it’s in the cloud, on the edge, or in the basement server room.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

VMware Azure 混合云 机器学习 Azure Arc
相关文章