arXiv:2506.06852v1 Announce Type: cross Abstract: Semantic segmentation of satellite imagery is crucial for Earth observation applications, but remains constrained by limited labelled training data. While self-supervised pretraining methods like Masked Autoencoders (MAE) have shown promise, they focus on reconstruction rather than localisation-a fundamental aspect of segmentation tasks. We propose adapting LOCA (Location-aware), a position prediction self-supervised learning method, for multimodal satellite imagery semantic segmentation. Our approach addresses the unique challenges of satellite data by extending SatMAE's channel grouping from multispectral to multimodal data, enabling effective handling of multiple modalities, and introducing same-group attention masking to encourage cross-modal interaction during pretraining. The method uses relative patch position prediction, encouraging spatial reasoning for localisation rather than reconstruction. We evaluate our approach on the Sen1Floods11 flood mapping dataset, where it significantly outperforms existing reconstruction-based self-supervised learning methods for satellite imagery. Our results demonstrate that position prediction tasks, when properly adapted for multimodal satellite imagery, learn representations more effective for satellite image semantic segmentation than reconstruction-based approaches.