cs.AI updates on arXiv.org 前天 14:49
AI-Generated Compromises for Coalition Formation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

arXiv:2506.06837v1 Announce Type: cross Abstract: The challenge of finding compromises between agent proposals is fundamental to AI subfields such as argumentation, mediation, and negotiation. Building on this tradition, Elkind et al. (2021) introduced a process for coalition formation that seeks majority-supported proposals preferable to the status quo, using a metric space where each agent has an ideal point. A crucial step in this process involves identifying compromise proposals around which agent coalitions can unite. How to effectively find such compromise proposals remains an open question. We address this gap by formalizing a model that incorporates agent bounded rationality and uncertainty, and by developing AI methods to generate compromise proposals. We focus on the domain of collaborative document writing, such as the democratic drafting of a community constitution. Our approach uses natural language processing techniques and large language models to induce a semantic metric space over text. Based on this space, we design algorithms to suggest compromise points likely to receive broad support. To evaluate our methods, we simulate coalition formation processes and show that AI can facilitate large-scale democratic text editing, a domain where traditional tools are limited.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

相关文章