cs.AI updates on arXiv.org 23小时前
A Deep RL Approach on Task Placement and Scaling of Edge Resources for Cellular Vehicle-to-Network Service Provisioning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

arXiv:2305.09832v4 Announce Type: replace Abstract: Cellular Vehicle-to-Everything (C-V2X) is currently at the forefront of the digital transformation of our society. By enabling vehicles to communicate with each other and with the traffic environment using cellular networks, we redefine transportation, improving road safety and transportation services, increasing efficiency of vehicular traffic flows, and reducing environmental impact. To effectively facilitate the provisioning of Cellular Vehicular-to-Network (C-V2N) services, we tackle the interdependent problems of service task placement and scaling of edge resources. Specifically, we formulate the joint problem and prove that it is not computationally tractable. To address its complexity we propose Deep Hybrid Policy Gradient (DHPG), a new Deep Reinforcement Learning (DRL) approach that operates in hybrid action spaces, enabling holistic decision-making and enhancing overall performance. We evaluated the performance of DHPG using simulations with a real-world C-V2N traffic dataset, comparing it to several state-of-the-art (SoA) solutions. DHPG outperforms these solutions, guaranteeing the $99^{th}$ percentile of C-V2N service delay target, while simultaneously optimizing the utilization of computing resources. Finally, time complexity analysis is conducted to verify that the proposed approach can support real-time C-V2N services.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

相关文章