cs.AI updates on arXiv.org 22小时前
ArchiLense: A Framework for Quantitative Analysis of Architectural Styles Based on Vision Large Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

arXiv:2506.07739v1 Announce Type: cross Abstract: Architectural cultures across regions are characterized by stylistic diversity, shaped by historical, social, and technological contexts in addition to geograph-ical conditions. Understanding architectural styles requires the ability to describe and analyze the stylistic features of different architects from various regions through visual observations of architectural imagery. However, traditional studies of architectural culture have largely relied on subjective expert interpretations and historical literature reviews, often suffering from regional biases and limited ex-planatory scope. To address these challenges, this study proposes three core contributions: (1) We construct a professional architectural style dataset named ArchDiffBench, which comprises 1,765 high-quality architectural images and their corresponding style annotations, collected from different regions and historical periods. (2) We propose ArchiLense, an analytical framework grounded in Vision-Language Models and constructed using the ArchDiffBench dataset. By integrating ad-vanced computer vision techniques, deep learning, and machine learning algo-rithms, ArchiLense enables automatic recognition, comparison, and precise classi-fication of architectural imagery, producing descriptive language outputs that ar-ticulate stylistic differences. (3) Extensive evaluations show that ArchiLense achieves strong performance in architectural style recognition, with a 92.4% con-sistency rate with expert annotations and 84.5% classification accuracy, effec-tively capturing stylistic distinctions across images. The proposed approach transcends the subjectivity inherent in traditional analyses and offers a more objective and accurate perspective for comparative studies of architectural culture.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

相关文章