cs.AI updates on arXiv.org 23小时前
MoE-MLoRA for Multi-Domain CTR Prediction: Efficient Adaptation with Expert Specialization
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

arXiv:2506.07563v1 Announce Type: cross Abstract: Personalized recommendation systems must adapt to user interactions across different domains. Traditional approaches like MLoRA apply a single adaptation per domain but lack flexibility in handling diverse user behaviors. To address this, we propose MoE-MLoRA, a mixture-of-experts framework where each expert is first trained independently to specialize in its domain before a gating network is trained to weight their contributions dynamically. We evaluate MoE-MLoRA across eight CTR models on Movielens and Taobao, showing that it improves performance in large-scale, dynamic datasets (+1.45 Weighed-AUC in Taobao-20) but offers limited benefits in structured datasets with low domain diversity and sparsity. Further analysis of the number of experts per domain reveals that larger ensembles do not always improve performance, indicating the need for model-aware tuning. Our findings highlight the potential of expert-based architectures for multi-domain recommendation systems, demonstrating that task-aware specialization and adaptive gating can enhance predictive accuracy in complex environments. The implementation and code are available in our GitHub repository.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

相关文章