arXiv:2506.07555v1 Announce Type: cross Abstract: Generating high fidelity, differentially private (DP) synthetic images offers a promising route to share and analyze sensitive visual data without compromising individual privacy. However, existing DP image synthesis methods struggle to produce high resolution outputs that faithfully capture the structure of the original data. In this paper, we introduce a novel method, referred to as Synthesis via Private Textual Intermediaries (SPTI), that can generate high resolution DP images with easy adoption. The key idea is to shift the challenge of DP image synthesis from the image domain to the text domain by leveraging state of the art DP text generation methods. SPTI first summarizes each private image into a concise textual description using image to text models, then applies a modified Private Evolution algorithm to generate DP text, and finally reconstructs images using text to image models. Notably, SPTI requires no model training, only inference with off the shelf models. Given a private dataset, SPTI produces synthetic images of substantially higher quality than prior DP approaches. On the LSUN Bedroom dataset, SPTI attains an FID less than or equal to 26.71 under epsilon equal to 1.0, improving over Private Evolution FID of 40.36. Similarly, on MM CelebA HQ, SPTI achieves an FID less than or equal to 33.27 at epsilon equal to 1.0, compared to 57.01 from DP fine tuning baselines. Overall, our results demonstrate that Synthesis via Private Textual Intermediaries provides a resource efficient and proprietary model compatible framework for generating high resolution DP synthetic images, greatly expanding access to private visual datasets.