arXiv:2506.06484v1 Announce Type: cross Abstract: Power-to-Gas (P2G) technologies gain recognition for enabling the integration of intermittent renewables, such as wind and solar, into electricity grids. However, determining the most cost-effective operation of these systems is complex due to the volatile nature of renewable energy, electricity prices, and loads. Additionally, P2G systems are less efficient in converting and storing energy compared to battery energy storage systems (BESs), and the benefits of converting electricity into gas are not immediately apparent. Deep Reinforcement Learning (DRL) has shown promise in managing the operation of energy systems amidst these uncertainties. Yet, DRL techniques face difficulties with the delayed reward characteristic of P2G system operation. Previous research has mostly focused on short-term studies that look at the energy conversion process, neglecting the long-term storage capabilities of P2G. This study presents a new method by thoroughly examining how DRL can be applied to the economic operation of P2G systems, in combination with BESs and gas turbines, over extended periods. Through three progressively more complex case studies, we assess the performance of DRL algorithms, specifically Deep Q-Networks and Proximal Policy Optimization, and introduce modifications to enhance their effectiveness. These modifications include integrating forecasts, implementing penalties on the reward function, and applying strategic cost calculations, all aimed at addressing the issue of delayed rewards. Our findings indicate that while DRL initially struggles with the complex decision-making required for P2G system operation, the adjustments we propose significantly improve its capability to devise cost-effective operation strategies, thereby unlocking the potential for long-term energy storage in P2G technologies.