cs.AI updates on arXiv.org 22小时前
WISCA: A Consensus-Based Approach to Harmonizing Interpretability in Tabular Datasets
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

arXiv:2506.06455v1 Announce Type: cross Abstract: While predictive accuracy is often prioritized in machine learning (ML) models, interpretability remains essential in scientific and high-stakes domains. However, diverse interpretability algorithms frequently yield conflicting explanations, highlighting the need for consensus to harmonize results. In this study, six ML models were trained on six synthetic datasets with known ground truths, utilizing various model-agnostic interpretability techniques. Consensus explanations were generated using established methods and a novel approach: WISCA (Weighted Scaled Consensus Attributions), which integrates class probability and normalized attributions. WISCA consistently aligned with the most reliable individual method, underscoring the value of robust consensus strategies in improving explanation reliability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

相关文章