arXiv:2506.06443v1 Announce Type: cross Abstract: Pretrained molecular encoders have become indispensable in computational chemistry for tasks such as property prediction and molecular generation. However, the standard practice of relying solely on final-layer embeddings for downstream tasks may discard valuable information. In this work, we challenge this convention by conducting a comprehensive layer-wise analysis of five diverse molecular encoders across 22 ADMET property prediction tasks. Our results demonstrate that embeddings from intermediate layers consistently outperform final-layer representations. Specifically, using fixed embeddings from the optimal intermediate layers improved downstream performance by an average of 5.4%, reaching gains up to 28.6%. Furthermore, finetuning up to these intermediate layers yielded even greater average improvements of 8.5%, with performance increases as high as 40.8%, achieving new state-of-the-art results on several benchmarks. Additionally, a strong positive correlation between fixed embedding performance and finetuning outcomes supports an efficient evaluate-then-finetune approach, enabling identification of optimal layers with reduced computational cost. These findings highlight the importance of exploring the full representational depth of molecular encoders to achieve substantial performance improvements and computational efficiency. The code is made publicly available at https://github.com/luispintoc/Unlocking-Chemical-Insights.