cs.AI updates on arXiv.org 22小时前
Unlocking Chemical Insights: Superior Molecular Representations from Intermediate Encoder Layers
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

arXiv:2506.06443v1 Announce Type: cross Abstract: Pretrained molecular encoders have become indispensable in computational chemistry for tasks such as property prediction and molecular generation. However, the standard practice of relying solely on final-layer embeddings for downstream tasks may discard valuable information. In this work, we challenge this convention by conducting a comprehensive layer-wise analysis of five diverse molecular encoders across 22 ADMET property prediction tasks. Our results demonstrate that embeddings from intermediate layers consistently outperform final-layer representations. Specifically, using fixed embeddings from the optimal intermediate layers improved downstream performance by an average of 5.4%, reaching gains up to 28.6%. Furthermore, finetuning up to these intermediate layers yielded even greater average improvements of 8.5%, with performance increases as high as 40.8%, achieving new state-of-the-art results on several benchmarks. Additionally, a strong positive correlation between fixed embedding performance and finetuning outcomes supports an efficient evaluate-then-finetune approach, enabling identification of optimal layers with reduced computational cost. These findings highlight the importance of exploring the full representational depth of molecular encoders to achieve substantial performance improvements and computational efficiency. The code is made publicly available at https://github.com/luispintoc/Unlocking-Chemical-Insights.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

相关文章