cs.AI updates on arXiv.org 22小时前
From Offline to Online Memory-Free and Task-Free Continual Learning via Fine-Grained Hypergradients
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

arXiv:2502.18762v2 Announce Type: replace-cross Abstract: Continual Learning (CL) aims to learn from a non-stationary data stream where the underlying distribution changes over time. While recent advances have produced efficient memory-free methods in the offline CL (offCL) setting, where tasks are known in advance and data can be revisited, online CL (onCL) remains dominated by memory-based approaches. The transition from offCL to onCL is challenging, as many offline methods rely on (1) prior knowledge of task boundaries and (2) sophisticated scheduling or optimization schemes, both of which are unavailable when data arrives sequentially and can be seen only once. In this paper, we investigate the adaptation of state-of-the-art memory-free offCL methods to the online setting. We first show that augmenting these methods with lightweight prototypes significantly improves performance, albeit at the cost of increased Gradient Imbalance, resulting in a biased learning towards earlier tasks. To address this issue, we introduce Fine-Grained Hypergradients, an online mechanism for rebalancing gradient updates during training. Our experiments demonstrate that the synergy between prototype memory and hypergradient reweighting substantially enhances the performance of memory-free methods in onCL and surpasses onCL baselines. Code will be released upon acceptance.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

相关文章