cs.AI updates on arXiv.org 22小时前
Detection Method for Prompt Injection by Integrating Pre-trained Model and Heuristic Feature Engineering
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

arXiv:2506.06384v1 Announce Type: cross Abstract: With the widespread adoption of Large Language Models (LLMs), prompt injection attacks have emerged as a significant security threat. Existing defense mechanisms often face critical trade-offs between effectiveness and generalizability. This highlights the urgent need for efficient prompt injection detection methods that are applicable across a wide range of LLMs. To address this challenge, we propose DMPI-PMHFE, a dual-channel feature fusion detection framework. It integrates a pretrained language model with heuristic feature engineering to detect prompt injection attacks. Specifically, the framework employs DeBERTa-v3-base as a feature extractor to transform input text into semantic vectors enriched with contextual information. In parallel, we design heuristic rules based on known attack patterns to extract explicit structural features commonly observed in attacks. Features from both channels are subsequently fused and passed through a fully connected neural network to produce the final prediction. This dual-channel approach mitigates the limitations of relying only on DeBERTa to extract features. Experimental results on diverse benchmark datasets demonstrate that DMPI-PMHFE outperforms existing methods in terms of accuracy, recall, and F1-score. Furthermore, when deployed actually, it significantly reduces attack success rates across mainstream LLMs, including GLM-4, LLaMA 3, Qwen 2.5, and GPT-4o.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

相关文章