arXiv:2506.06381v1 Announce Type: cross Abstract: Cyber-Physical Systems (CPS) increasingly depend on advanced AI techniques to operate in critical applications. However, traditional verification and validation methods often struggle to handle the unpredictable and dynamic nature of AI components. In this paper, we introduce CPS-Guard, a novel framework that employs multi-role orchestration to automate the iterative assurance process for AI-powered CPS. By assigning specialized roles (e.g., safety monitoring, security assessment, fault injection, and recovery planning) to dedicated agents within a simulated environment, CPS-Guard continuously evaluates and refines AI behavior against a range of dependability requirements. We demonstrate the framework through a case study involving an autonomous vehicle navigating an intersection with an AI-based planner. Our results show that CPS-Guard effectively detects vulnerabilities, manages performance impacts, and supports adaptive recovery strategies, thereby offering a structured and extensible solution for rigorous V&V in safety- and security-critical systems.