cs.AI updates on arXiv.org 23小时前
DELT: A Simple Diversity-driven EarlyLate Training for Dataset Distillation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

arXiv:2411.19946v2 Announce Type: replace-cross Abstract: Recent advances in dataset distillation have led to solutions in two main directions. The conventional batch-to-batch matching mechanism is ideal for small-scale datasets and includes bi-level optimization methods on models and syntheses, such as FRePo, RCIG, and RaT-BPTT, as well as other methods like distribution matching, gradient matching, and weight trajectory matching. Conversely, batch-to-global matching typifies decoupled methods, which are particularly advantageous for large-scale datasets. This approach has garnered substantial interest within the community, as seen in SRe$^2$L, G-VBSM, WMDD, and CDA. A primary challenge with the second approach is the lack of diversity among syntheses within each class since samples are optimized independently and the same global supervision signals are reused across different synthetic images. In this study, we propose a new Diversity-driven EarlyLate Training (DELT) scheme to enhance the diversity of images in batch-to-global matching with less computation. Our approach is conceptually simple yet effective, it partitions predefined IPC samples into smaller subtasks and employs local optimizations to distill each subset into distributions from distinct phases, reducing the uniformity induced by the unified optimization process. These distilled images from the subtasks demonstrate effective generalization when applied to the entire task. We conduct extensive experiments on CIFAR, Tiny-ImageNet, ImageNet-1K, and its sub-datasets. Our approach outperforms the previous state-of-the-art by 2$\sim$5% on average across different datasets and IPCs (images per class), increasing diversity per class by more than 5% while reducing synthesis time by up to 39.3% for enhancing the training efficiency. Code is available at: https://github.com/VILA-Lab/DELT.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

相关文章