arXiv:2506.06353v1 Announce Type: cross Abstract: The growing convergence between Large Language Models (LLMs) and electroencephalography (EEG) research is enabling new directions in neural decoding, brain-computer interfaces (BCIs), and affective computing. This survey offers a systematic review and structured taxonomy of recent advancements that utilize LLMs for EEG-based analysis and applications. We organize the literature into four domains: (1) LLM-inspired foundation models for EEG representation learning, (2) EEG-to-language decoding, (3) cross-modal generation including image and 3D object synthesis, and (4) clinical applications and dataset management tools. The survey highlights how transformer-based architectures adapted through fine-tuning, few-shot, and zero-shot learning have enabled EEG-based models to perform complex tasks such as natural language generation, semantic interpretation, and diagnostic assistance. By offering a structured overview of modeling strategies, system designs, and application areas, this work serves as a foundational resource for future work to bridge natural language processing and neural signal analysis through language models.