cs.AI updates on arXiv.org 23小时前
Unified Game Moderation: Soft-Prompting and LLM-Assisted Label Transfer for Resource-Efficient Toxicity Detection
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

arXiv:2506.06347v1 Announce Type: cross Abstract: Toxicity detection in gaming communities faces significant scaling challenges when expanding across multiple games and languages, particularly in real-time environments where computational efficiency is crucial. We present two key findings to address these challenges while building upon our previous work on ToxBuster, a BERT-based real-time toxicity detection system. First, we introduce a soft-prompting approach that enables a single model to effectively handle multiple games by incorporating game-context tokens, matching the performance of more complex methods like curriculum learning while offering superior scalability. Second, we develop an LLM-assisted label transfer framework using GPT-4o-mini to extend support to seven additional languages. Evaluations on real game chat data across French, German, Portuguese, and Russian achieve macro F1-scores ranging from 32.96% to 58.88%, with particularly strong performance in German, surpassing the English benchmark of 45.39%. In production, this unified approach significantly reduces computational resources and maintenance overhead compared to maintaining separate models for each game and language combination. At Ubisoft, this model successfully identifies an average of 50 players, per game, per day engaging in sanctionable behavior.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

相关文章