cs.AI updates on arXiv.org 前天 12:35
Dynamic Graph CNN with Jacobi Kolmogorov-Arnold Networks for 3D Classification of Point Sets
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

arXiv:2506.06296v1 Announce Type: cross Abstract: We introduce Jacobi-KAN-DGCNN, a framework that integrates Dynamic Graph Convolutional Neural Network (DGCNN) with Jacobi Kolmogorov-Arnold Networks (KAN) for the classification of three-dimensional point clouds. This method replaces Multi-Layer Perceptron (MLP) layers with adaptable univariate polynomial expansions within a streamlined DGCNN architecture, circumventing deep levels for both MLP and KAN to facilitate a layer-by-layer comparison. In comparative experiments on the ModelNet40 dataset, KAN layers employing Jacobi polynomials outperform the traditional linear layer-based DGCNN baseline in terms of accuracy and convergence speed, while maintaining parameter efficiency. Our results demonstrate that higher polynomial degrees do not automatically improve performance, highlighting the need for further theoretical and empirical investigation to fully understand the interactions between polynomial bases, degrees, and the mechanisms of graph-based learning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

相关文章