arXiv:2506.06286v1 Announce Type: cross Abstract: Recent advances in AI research make it increasingly plausible that artificial agents with consequential real-world impact will soon operate beyond tightly controlled environments. Ensuring that these agents are not only safe but that they adhere to broader normative expectations is thus an urgent interdisciplinary challenge. Multiple fields -- notably AI Safety, AI Alignment, and Machine Ethics -- claim to contribute to this task. However, the conceptual boundaries and interrelations among these domains remain vague, leaving researchers without clear guidance in positioning their work. To address this meta-challenge, we develop a structured conceptual framework for understanding AI alignment. Rather than focusing solely on alignment goals, we introduce a taxonomy distinguishing the alignment aim (safety, ethicality, legality, etc.), scope (outcome vs. execution), and constituency (individual vs. collective). This structural approach reveals multiple legitimate alignment configurations, providing a foundation for practical and philosophical integration across domains, and clarifying what it might mean for an agent to be aligned all-things-considered.