cs.AI updates on arXiv.org 前天 12:35
Gradients: When Markets Meet Fine-tuning -- A Distributed Approach to Model Optimisation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

arXiv:2506.07940v1 Announce Type: new Abstract: Foundation model fine-tuning faces a fundamental challenge: existing AutoML platforms rely on single optimisation strategies that explore only a fraction of viable hyperparameter configurations. In this white paper, We introduce Gradients, a decentralised AutoML platform that transforms hyperparameter optimisation into a competitive marketplace where independent miners compete to discover optimal configurations. Economic incentives align individual exploration with collective optimisation goals, driving systematic investigation of hyperparameter regions that centralised methods miss. We evaluate our approach across 180 controlled experiments spanning diverse model architectures (70M to 70B parameters) and task types. Gradients achieves an 82.8\% win rate against HuggingFace AutoTrain and 100\% against TogetherAI, Databricks, and Google Cloud, with mean improvements of 11.8\% and 42.1\% respectively. Complex reasoning and retrieval tasks show particularly strong gains of 30-40\%, whilst diffusion models achieve 23.4\% improvements for person-specific generation. These results demonstrate that competitive, economically-driven approaches can systematically discover superior configurations that centralised AutoML consistently miss.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

相关文章