arXiv:2506.07223v1 Announce Type: new Abstract: In the realm of embodied intelligence, the evolution of large language models (LLMs) has markedly enhanced agent decision making. Consequently, researchers have begun exploring agent performance in dynamically changing high-risk scenarios, i.e., fire, flood, and wind scenarios in the HAZARD benchmark. Under these extreme conditions, the delay in decision making emerges as a crucial yet insufficiently studied issue. We propose a Time Conversion Mechanism (TCM) that translates inference delays in decision-making into equivalent simulation frames, thus aligning cognitive and physical costs under a single FPS-based metric. By extending HAZARD with Respond Latency (RL) and Latency-to-Action Ratio (LAR), we deliver a fully latency-aware evaluation protocol. Moreover, we present the Rapid-Reflex Async-Reflect Agent (RRARA), which couples a lightweight LLM-guided feedback module with a rule-based agent to enable immediate reactive behaviors and asynchronous reflective refinements in situ. Experiments on HAZARD show that RRARA substantially outperforms existing baselines in latency-sensitive scenarios.