arXiv:2506.07075v1 Announce Type: new Abstract: The growing complexity of factual claims in real-world scenarios presents significant challenges for automated fact verification systems, particularly in accurately aggregating and reasoning over multi-hop evidence. Existing approaches often rely on static or shallow models that fail to capture the evolving structure of reasoning paths, leading to fragmented retrieval and limited interpretability. To address these issues, we propose a Structural Reasoning framework for Multi-hop Fact Verification that explicitly models reasoning paths as structured graphs throughout both evidence retrieval and claim verification stages. Our method comprises two key modules: a structure-enhanced retrieval mechanism that constructs reasoning graphs to guide evidence collection, and a reasoning-path-guided verification module that incrementally builds subgraphs to represent evolving inference trajectories. We further incorporate a structure-aware reasoning mechanism that captures long-range dependencies across multi-hop evidence chains, enabling more precise verification. Extensive experiments on the FEVER and HoVer datasets demonstrate that our approach consistently outperforms strong baselines, highlighting the effectiveness of reasoning-path modeling in enhancing retrieval precision and verification accuracy.