cs.AI updates on arXiv.org 前天 12:35
Long-Tailed Learning for Generalized Category Discovery
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

arXiv:2506.06965v1 Announce Type: new Abstract: Generalized Category Discovery (GCD) utilizes labeled samples of known classes to discover novel classes in unlabeled samples. Existing methods show effective performance on artificial datasets with balanced distributions. However, real-world datasets are always imbalanced, significantly affecting the effectiveness of these methods. To solve this problem, we propose a novel framework that performs generalized category discovery in long-tailed distributions. We first present a self-guided labeling technique that uses a learnable distribution to generate pseudo-labels, resulting in less biased classifiers. We then introduce a representation balancing process to derive discriminative representations. By mining sample neighborhoods, this process encourages the model to focus more on tail classes. We conduct experiments on public datasets to demonstrate the effectiveness of the proposed framework. The results show that our model exceeds previous state-of-the-art methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

相关文章