cs.AI updates on arXiv.org 前天 12:35
Deontically Constrained Policy Improvement in Reinforcement Learning Agents
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

arXiv:2506.06959v1 Announce Type: new Abstract: Markov Decision Processes (MDPs) are the most common model for decision making under uncertainty in the Machine Learning community. An MDP captures non-determinism, probabilistic uncertainty, and an explicit model of action. A Reinforcement Learning (RL) agent learns to act in an MDP by maximizing a utility function. This paper considers the problem of learning a decision policy that maximizes utility subject to satisfying a constraint expressed in deontic logic. In this setup, the utility captures the agent's mission - such as going quickly from A to B. The deontic formula represents (ethical, social, situational) constraints on how the agent might achieve its mission by prohibiting classes of behaviors. We use the logic of Expected Act Utilitarianism, a probabilistic stit logic that can be interpreted over controlled MDPs. We develop a variation on policy improvement, and show that it reaches a constrained local maximum of the mission utility. Given that in stit logic, an agent's duty is derived from value maximization, this can be seen as a way of acting to simultaneously maximize two value functions, one of which is implicit, in a bi-level structure. We illustrate these results with experiments on sample MDPs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

相关文章