cs.AI updates on arXiv.org 前天 12:35
Predicting Bad Goods Risk Scores with ARIMA Time Series: A Novel Risk Assessment Approach
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

arXiv:2502.16520v3 Announce Type: replace-cross Abstract: The increasing complexity of supply chains and the rising costs associated with defective or substandard goods (bad goods) highlight the urgent need for advanced predictive methodologies to mitigate risks and enhance operational efficiency. This research presents a novel framework that integrates Time Series ARIMA (AutoRegressive Integrated Moving Average) models with a proprietary formula specifically designed to calculate bad goods after time series forecasting. By leveraging historical data patterns, including sales, returns, and capacity, the model forecasts potential quality failures, enabling proactive decision-making. ARIMA is employed to capture temporal trends in time series data, while the newly developed formula quantifies the likelihood and impact of defects with greater precision. Experimental results, validated on a dataset spanning 2022-2024 for Organic Beer-G 1 Liter, demonstrate that the proposed method outperforms traditional statistical models, such as Exponential Smoothing and Holt-Winters, in both prediction accuracy and risk evaluation. This study advances the field of predictive analytics by bridging time series forecasting, ARIMA, and risk management in supply chain quality control, offering a scalable and practical solution for minimizing losses due to bad goods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

相关文章