cs.AI updates on arXiv.org 前天 12:35
AI Simulation by Digital Twins: Systematic Survey, Reference Framework, and Mapping to a Standardized Architecture
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

arXiv:2506.06580v1 Announce Type: new Abstract: Insufficient data volume and quality are particularly pressing challenges in the adoption of modern subsymbolic AI. To alleviate these challenges, AI simulation uses virtual training environments in which AI agents can be safely and efficiently developed with simulated, synthetic data. Digital twins open new avenues in AI simulation, as these high-fidelity virtual replicas of physical systems are equipped with state-of-the-art simulators and the ability to further interact with the physical system for additional data collection. In this article, we report on our systematic survey of digital twin-enabled AI simulation. By analyzing 22 primary studies, we identify technological trends and derive a reference framework to situate digital twins and AI components. Based on our findings, we derive a reference framework and provide architectural guidelines by mapping it onto the ISO 23247 reference architecture for digital twins. Finally, we identify challenges and research opportunities for prospective researchers.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

相关文章