背景
当前对DeepSeek-R1此类带推理think思维链的模型进行模型能力测评缺乏一个较准确的方,MindIE当前不能对DeepSeek报告中提到的几个数据集(AIME 2024、AIME 2025、MATH-500、GPQA等)进行模型效果评测。Open R1由huggingface出品,是当前最火的DeepSeek-R1全开源复现。我们可以参考Open R1项目的评测方法,基于lighteval进行评测。
约束条件
- 硬件约束:本案例硬件信息为Atlas 800I A2 ,约束条件为模型在MindIE服务可成功部署即可。MindIE版本:同上,模型可成功部署即可。lighteval版本:本案例验证lighteval版本为commit-id:ed084813e0bd12d82a06d9f913291fdbee774905,新版本代码可能需自行验证。
模型权重下载
# 安装modelscopepip install modelscope -i https://pypi.tuna.tsinghua.edu.cn/simple/# 使用modelscope下载权重modelscope download --model deepseek-ai/DeepSeek-R1-Distill-Qwen-7B --local_dir ./DeepSeek-R1-Distill-Qwen-7B
MindIE服务化部署
镜像下载
下载链接:https://www.hiascend.com/developer/ascendhub/detail/af85b724a7e5469ebd7ea13c3439d48f
启动容器
# 查看镜像docker images# 创建并启动容器sudo docker run -it --name lighteval_test \ --network=host --shm-size=128G \ --privileged=true \ --device=/dev/davinci_manager \ --device=/dev/hisi_hdc \ --device=/dev/devmm_svm \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ -v /usr/local/dcmi:/usr/local/dcmi \ -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \ -v /usr/local/sbin:/usr/local/sbin \ -v /etc/ascend_install.info:/etc/ascend_install.info \ -v /home:/home \ -v /tmp:/tmp \ -v /data:/data \ -v `pwd`:/workspace \ -w /workspace \swr.cn-south-1.myhuaweicloud.com/ascendhub/mindie:2.0.RC1-800I-A2-py311-openeuler24.03-lts /bin/bash
环境变量
# 在容器中设置如下环境变量:source /usr/local/Ascend/ascend-toolkit/set_env.shsource /usr/local/Ascend/nnal/atb/set_env.shsource /usr/local/Ascend/mindie/set_env.shsource /usr/local/Ascend/atb-models/set_env.sh
启动MindIE服务
修改MindIE配置文件
cd /usr/local/Ascend/mindie/latest/mindie-service/confvim config.json修改config.json的配置项:修改"httpsEnabled"为false,修改"npuDeviceIds"为[[0,1,2,3,4,5,6,7]],修改"modelName"为"qwen_distill_7b"修改"modelWeightPath"为/home/test/DeepSeek-R1-Distill-Qwen-7B修改"worldSize"为8其它config.json的参考配置:maxSeqlen为最大输入加输出长度,此处建议修改为40960maxInputTokenLen:根据实际输入长度配置,此处建议8192maxPrefillTokens:建议和maxSeqlen保持一致即可maxIterTimes:由于带think思维链模型输出较长,建议设为32786
修改模型配置文件
vim /home/test/DeepSeek-R1-Distill-Qwen-7B/config.json修改"torch_dtype": "float16",
修改模型路径权限
chmod -R 750 /home/test/DeepSeek-R1-Distill-Qwen-7B
启动MindIE服务
cd /usr/local/Ascend/mindie/latest/mindie-service/bin./mindieservice_daemon
启动成功显示:
Daemon starts success!
MindIE服务测试
curl 127.0.0.1:1025/generate -d '{"prompt": "What is deep learning?","max_tokens": 32,"stream": false,"do_sample":true,"repetition_penalty": 1.00,"temperature": 0.01,"top_p": 0.001,"top_k": 1,"model": "qwen_distill_7b"}'
注意:上面curl语句中的1025端口与qwen_distill_7b 分别与/usr/local/Ascend/mindie/latest/mindie-service/conf/config.json
配置文件里的port和modelName对应
安装lighteval
python包安装(不推荐)
pip install lighteval
python包安装可能由于版本问题会和open-r1提供的评测脚本有代码冲突,建议选择通过源码安装
源码安装(推荐)
git clone https://github.com/huggingface/lighteval.gitcd lighteval# 本次验证参考版本commit-id:ed084813e0bd12d82a06d9f913291fdbee774905git checkout ed084813e0bd12d82a06d9f913291fdbee774905pip install .pip install .[math]
编写evaluate.py
参考Open R1项目的的src/open_r1/evaluate.py 准备好evaluate.py文件,用于自定义评测任务:
# Copyright 2025 The HuggingFace Team. All rights reserved.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License."""Custom evaluation tasks for LightEval."""import randomfrom lighteval.metrics.dynamic_metrics import ( ExprExtractionConfig, IndicesExtractionConfig, LatexExtractionConfig, multilingual_extractive_match_metric,)from lighteval.tasks.lighteval_task import LightevalTaskConfigfrom lighteval.tasks.requests import Docfrom lighteval.utils.language import Languagelatex_gold_metric = multilingual_extractive_match_metric( language=Language.ENGLISH, fallback_mode="first_match", precision=5, gold_extraction_target=(LatexExtractionConfig(),), # Match boxed first before trying other regexes pred_extraction_target=(ExprExtractionConfig(), LatexExtractionConfig(boxed_match_priority=0)), aggregation_function=max,)expr_gold_metric = multilingual_extractive_match_metric( language=Language.ENGLISH, fallback_mode="first_match", precision=5, gold_extraction_target=(ExprExtractionConfig(),), # Match boxed first before trying other regexes pred_extraction_target=(ExprExtractionConfig(), LatexExtractionConfig(boxed_match_priority=0)), aggregation_function=max,)gpqa_metric = multilingual_extractive_match_metric( language=Language.ENGLISH, gold_extraction_target=[IndicesExtractionConfig(prefix_for_extraction="NativeLetters")], pred_extraction_target=[IndicesExtractionConfig(prefix_for_extraction="NativeLetters")], precision=5,)def prompt_fn(line, task_name: str = None): """Assumes the model is either prompted to emit \\boxed{answer} or does so automatically""" return Doc( task_name=task_name, query=line["problem"], choices=[line["solution"]], gold_index=0, )def aime_prompt_fn(line, task_name: str = None): return Doc( task_name=task_name, query=line["problem"], choices=[line["answer"]], gold_index=0, )def gpqa_prompt_fn(line, task_name: str = None): """Prompt template adapted from simple-evals: https://github.com/openai/simple-evals/blob/83ed7640a7d9cd26849bcb3340125002ef14abbe/common.py#L14""" gold_index = random.randint(0, 3) choices = [line["Incorrect Answer 1"], line["Incorrect Answer 2"], line["Incorrect Answer 3"]] choices.insert(gold_index, line["Correct Answer"]) query_template = "Answer the following multiple choice question. The last line of your response should be of the following format: 'Answer: $LETTER' (without quotes) where LETTER is one of ABCD. Think step by step before answering.\n\n{Question}\n\nA) {A}\nB) {B}\nC) {C}\nD) {D}" query = query_template.format(A=choices[0], B=choices[1], C=choices[2], D=choices[3], Question=line["Question"]) return Doc( task_name=task_name, query=query, choices=["A", "B", "C", "D"], gold_index=gold_index, instruction=query, )# Define tasksaime24 = LightevalTaskConfig( name="aime24", suite=["custom"], prompt_function=aime_prompt_fn, hf_repo="HuggingFaceH4/aime_2024", hf_subset="default", hf_avail_splits=["train"], evaluation_splits=["train"], few_shots_split=None, few_shots_select=None, generation_size=32768, metric=[expr_gold_metric], version=1,)aime25 = LightevalTaskConfig( name="aime25", suite=["custom"], prompt_function=aime_prompt_fn, hf_repo="yentinglin/aime_2025", hf_subset="default", hf_avail_splits=["train"], evaluation_splits=["train"], few_shots_split=None, few_shots_select=None, generation_size=32768, metric=[expr_gold_metric], version=1,)math_500 = LightevalTaskConfig( name="math_500", suite=["custom"], prompt_function=prompt_fn, hf_repo="HuggingFaceH4/MATH-500", hf_subset="default", hf_avail_splits=["test"], evaluation_splits=["test"], few_shots_split=None, few_shots_select=None, generation_size=32768, metric=[latex_gold_metric], version=1,)gpqa_diamond = LightevalTaskConfig( name="gpqa:diamond", suite=["custom"], prompt_function=gpqa_prompt_fn, hf_repo="Idavidrein/gpqa", hf_subset="gpqa_diamond", hf_avail_splits=["train"], evaluation_splits=["train"], few_shots_split=None, few_shots_select=None, generation_size=32768, # needed for reasoning models like R1 metric=[gpqa_metric], stop_sequence=[], # no stop sequence, will use eos token trust_dataset=True, version=1,)# Add tasks to the tableTASKS_TABLE = []TASKS_TABLE.append(aime24)TASKS_TABLE.append(aime25)TASKS_TABLE.append(math_500)TASKS_TABLE.append(gpqa_diamond)# MODULE LOGICif __name__ == "__main__": print([t["name"] for t in TASKS_TABLE]) print(len(TASKS_TABLE))
测评方式说明
lighteval 提供了几个主要的入口点来进行模型评估,但是在NPU设备上使用vllm和tgi模式可能还需要对代码进行适配,因此我们可以使用的就是accelerate 和endpoint openai两个模式。但是accelerate模型存在输出较短和推理速度较慢的问题,==因此推荐基于openai模式,并通过MindIE部署模型推理服务实现评测==。
使用openai模式测评(基于lighteval+MindIE服务)
lighteval也支持通过openai第三方库对模型推理服务进行评分,但当前评测框架没有对本地模型服务的情况进行适配,通过分析代码发现适配量不大,因此采用此模式对MindIE服务进行模型评测。
lighteval适配本地推理服务
查找lighteval安装路径
通过pip show lighteval找到lighteval安装路径
修改openai_model.py
修改lighteval python安装包路径下“lighteval/models/endpoints/openai_model.py”代码:
- 修改base_url读取方式,使其可以从环境变量读取
- 请求的model字段改成现有的MindIE模型服务的模型名,此处为"qwen_distill_7b"
评测命令
==说明:==
- 下面OPENAI_BASE_URL需配置为服务地址,注意需保证服务可访问,可通过curl命令验证;OPENAI_API_KEY未使用,但是仍需配置,要求非空。--custom-tasks 后填写前面自定义的evaluate.py文件路径
配置环境变量
MODEL="/home/test/DeepSeek-R1-Distill-Qwen-7B"MODEL_ARGS="$MODEL"OUTPUT_DIR=./data/evals/$MODELexport OPENAI_BASE_URL="http://127.0.0.1:1025/v1"export OPENAI_API_KEY="test"
AIME 2024测评
TASK=aime24lighteval endpoint openai $MODEL_ARGS "custom|$TASK|0|0" \ --custom-tasks evaluate.py \--output-dir $OUTPUT_DIR
MATH-500测评
TASK=math_500lighteval endpoint openai $MODEL_ARGS "custom|$TASK|0|0" \ --custom-tasks evaluate.py \ --output-dir $OUTPUT_DIR