cs.AI updates on arXiv.org 06月03日 13:00
Multi-Objective Neural Network Assisted Design Optimization of Soft Fin-Ray Grippers for Enhanced Grasping Performance
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了软体Fin-Ray抓手的设计优化问题,这类抓手以其在不同领域的精细和谨慎操作而备受关注。研究重点在于解决在抓取不同形状和尺寸物体时,如何平衡抓手的力量和精细操作能力。研究使用有限元方法(FEM)估计Fin-Ray的偏转和接触力,构建多层感知器(MLP)预测接触力和尖端位移。通过多目标优化技术,特别是非支配排序遗传算法(NSGA-II),找到优化解决方案,旨在改进软体机器人抓手的设计和抓取性能,实现既能精细抓取又能高力应用的抓手设计。

💡Fin-Ray抓手因其能够安全处理各种形状和尺寸的物体,并在不同领域展现出精细操作能力而备受关注。这种抓手内部结构的设计直接影响其适应性和抓取性能,但设计中对非线性抓取力和变形行为的建模极具挑战性。

⚙️研究采用有限元方法(FEM)来估计Fin-Ray抓取圆柱形物体时的偏转和接触力,并基于此数据集构建多层感知器(MLP),用于预测接触力和尖端位移。MLP的输入特征包括前梁和支撑梁的厚度、横梁的厚度以及横梁之间的等间距。

🎯研究设定了两个优化目标:最大接触力和最大尖端位移的大小。这两个目标反映了软体Fin-Ray抓手在力量和精细操作之间的权衡。研究使用非支配排序遗传算法(NSGA-II)进行多目标优化。

✅研究结果表明,所采用的方法可以用于改进软体机器人抓手的设计和抓取性能,帮助选择不仅适用于精细抓取,也适用于高力应用的设计方案。

arXiv:2506.00494v1 Announce Type: cross Abstract: Soft Fin-Ray grippers can perform delicate and careful manipulation, which has caused notable attention in different fields. These grippers can handle objects of various forms and sizes safely. The internal structure of the Fin-Ray finger plays a significant role in its adaptability and grasping performance. However, modeling the non-linear grasp force and deformation behaviors for design purposes is challenging. Moreover, when the Fin-Ray finger becomes more rigid and capable of exerting higher forces, it becomes less delicate in handling objects. The contrast between these two objectives gives rise to a multi-objective optimization problem. In this study, we employ finite element method (FEM) to estimate the deflections and contact forces of the Fin-Ray, grasping cylindrical objects. This dataset is then used to construct a multilayer perception (MLP) for prediction of the contact force and the tip displacement. The FEM dataset consists of three input and four target features. The three input features of the MLP and optimization design variables are the thickness of the front and supporting beams, the thickness of the cross beams, and the equal spacing between the cross beams. In addition, the target features are the maximum contact forces and maximum tip displacements in x- and y-directions. The magnitude of maximum contact force and magnitude of maximum tip displacement are the two objectives, showing the trade-off between force and delicate manipulation in soft Fin-Ray grippers. Furthermore, the optimized set of solutions are found using multi-objective optimal techniques. We use non-dominated sorting genetic algorithm (NSGA-II) method for this purpose. Our findings demonstrate that our methodologies can be used to improve the design and gripping performance of soft robotic grippers, helping us to choose a design not only for delicate grasping but also for high-force applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Fin-Ray抓手 软体机器人 多目标优化 有限元方法 NSGA-II
相关文章