cs.AI updates on arXiv.org 前天 12:34
Online Fair Division for Personalized $2$-Value Instances
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了在线公平分配问题,其中物品逐个到达,且存在一组固定数量的代理人,每个代理人对物品具有加性估值函数。文章探讨了在估值函数受限的情况下,如何实现公平分配。研究重点在于个性化2值实例,其中每个代理人对每个物品只有两种可能的值。研究表明,针对最大最小份额公平性和无嫉妒性(至多一个或两个物品)等公平性概念,可以获得最坏情况下的保证。文章提出了一个确定性算法,该算法在每个时间步维护一个1/(2n-1)-MMS分配,并展示了在关注每个时间步的情况下,这是任何确定性算法可以达到的最佳效果。此外,通过允许有限的未来信息访问,可以获得更强的结果。例如,通过预知未来n-1个时间步的物品价值,设计了一个基于匹配的算法,该算法每n个时间步实现EF1分配,同时始终保持EF2分配。

💡在线公平分配问题:文章研究了在线公平分配场景,物品逐个到达,需要立即分配给代理人,每个代理人对物品有加性估值。

🧐限制估值的重要性:在没有对估值进行限制的情况下,在线公平分配问题很难解决。本文关注个性化2值实例,每个代理人对每个物品只有两种可能的值。

⚙️算法与公平性保证:文章提出一个确定性算法,在每个时间步维护1/(2n-1)-MMS分配,并分析了其在不同时间步的表现。通过允许有限的未来信息,可以设计出更强的算法,例如基于匹配的算法,每n个时间步实现EF1分配,同时始终保持EF2分配。

⏳未来信息的影响:通过预知未来信息,可以显著改善分配结果。例如,预知未来n-1个时间步的物品价值,可以设计出更优的算法。

arXiv:2505.22174v1 Announce Type: cross Abstract: We study an online fair division setting, where goods arrive one at a time and there is a fixed set of $n$ agents, each of whom has an additive valuation function over the goods. Once a good appears, the value each agent has for it is revealed and it must be allocated immediately and irrevocably to one of the agents. It is known that without any assumptions about the values being severely restricted or coming from a distribution, very strong impossibility results hold in this setting. To bypass the latter, we turn our attention to instances where the valuation functions are restricted. In particular, we study personalized $2$-value instances, where there are only two possible values each agent may have for each good, possibly different across agents, and we show how to obtain worst case guarantees with respect to well-known fairness notions, such as maximin share fairness and envy-freeness up to one (or two) good(s). We suggest a deterministic algorithm that maintains a $1/(2n-1)$-MMS allocation at every time step and show that this is the best possible any deterministic algorithm can achieve if one cares about every single time step; nevertheless, eventually the allocation constructed by our algorithm becomes a $1/4$-MMS allocation. To achieve this, the algorithm implicitly maintains a fragile system of priority levels for all agents. Further, we show that, by allowing some limited access to future information, it is possible to have stronger results with less involved approaches. By knowing the values of goods for $n-1$ time steps into the future, we design a matching-based algorithm that achieves an EF$1$ allocation every $n$ time steps, while always maintaining an EF$2$ allocation. Finally, we show that our results allow us to get the first nontrivial guarantees for additive instances in which the ratio of the maximum over the minimum value an agent has for a good is bounded.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

在线公平分配 算法 公平性 估值函数
相关文章