2. Lloyd, S. The Universe as Quantum Computer, A Computable Universe: Understanding and Exploring Nature as Computation; World Scientific: Singapore, 2013.
3. Miller, J.F.; Harding, S.L.; Tufte, G. Evolution-in-materio: Evolving computation in materials. Evol. Intel. 2014, 7, 49–67. [CrossRef]
4. Piccinini, G.; Maley, C. Computation in physical systems. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2010; Available online: https://plato.stanford.edu/archives/sum2021/entries/computation-physicalsystems (accessed on 16 April 2025).
5. Markov, I. Limits on fundamental limits to computation. Nature 2014, 512, 147–154. [CrossRef]
6. Liu, Y.C.; Huang, K.; Xiao, Y.-F.; Yang, L.; Qiu, C.W. What limits limits? Nat. Sci. Rev. 2021, 8, nwaa210. [CrossRef]
7. Bormashenko, E. Landauer Bound in the Context of Minimal Physical Principles: Meaning, Experimental Verification, Controversies and Perspectives. Entropy 2024, 26, 423. [CrossRef] [PubMed]
8. Hecht, E. Modern Optics. In Optics, 4th ed.; Addison-Wesley: Reading, MA, USA, 2002; Chapter 13; pp. 609–611.
9. Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Non-Relativistic Theory, 3rd ed.; Pergamon Press: Oxford, UK, 1977; Volume 3, Chapter 2; pp. 46–49.
10. Bremermann, H.J. Optimization through evolution and recombination. In Self-Organizing Systems 1962; Yovits, M.C., Jacobi, G.T., Goldstein, G.D., Eds.; Spartan Books: Washington, DC, USA, 1962; pp. 93–106.
11. Mandelstam, L.; Tamm, I. The Uncertainty Relation Between Energy and Time in Non-Relativistic Quantum Mechanics, in Selected Papers; Bolotovskii, B.M., Frenkel, V.Y., Peierls, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1991.
12. Hörnedal, N.; Sönnerborn, O. Margolus-Levitin quantum speed limit for an arbitrary fidelity. Phys. Rev. Res. 2023, 5, 043234. [CrossRef]
13. Margolus, M.; Levitin, L.B. The maximum speed of dynamical evolution. Phys. D Nonlinear Phenomena 1998, 120, 188–195. [CrossRef]
14. Landauer, R. Dissipation and heat generation in the computing process. IBM J. Res. Dev. 1961, 5, 183.[CrossRef]
15. Landauer, R. Information is physical. Phys. Today 1991, 44, 5, 23–29. [CrossRef]
16. Landauer, R. Minimal energy requirements in communication. Science 1996, 272, 1914–1918. [CrossRef]
17. Bennett, C.H.; Landauer, R. The fundamental physical limits of computation. Sci. Am. 1985, 253, 48–57. [CrossRef]
18. Maroney, O.J.E. The (absence of a) relationship between thermodynamic and logical reversibility. Stud. Hist. Philos. Sci. B 2005, 36, 355–374. [CrossRef]
19. Piechocinska, B. Information erasure. Phys. Rev. A 2000, 61, 062314. [CrossRef]
20. Parrondo, J.M.R.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nat. Phys. 2015, 11, 131–139. [CrossRef]
21. Sagawa, T. Thermodynamic and logical reversibilities revisited. J. Stat. Mech. 2014, 2014, P03025. [CrossRef]
22. Herrera, L. The mass of a bit of information and the Brillouin’s principle. Fluct. Noise Lett. 2014, 13, 1450002. [CrossRef]
23. Herrera, L. Landauer Principle and General Relativity. Entropy 2020, 22, 340. [CrossRef] [PubMed]
24. Bormashenko, E. Generalization of the Landauer Principle for Computing Devices Based on Many-Valued Logic. Entropy 2019, 21, 1150. [CrossRef]
25. Hartnoll, S.A.; Mackenzie, A.P. Colloquium: Planckian dissipation in metals. Rev. Mod. Phys. 2022, 94, 041002. [CrossRef]
26. Wheeler, J.A. Information, physics, quantum: The search for links. In Proceedings of the 3rd International Symposium on Foundations of Quantum Mechanics in the Light of New Technology, Tokyo, Japan, 28–31 August 1989; pp. 354–368.
27. Vopson, M. The mass-energy-information equivalence principle. AIP Adv. 2019, 9, 095206. [CrossRef]
28. Müller, J.G. Events as Elements of Physical Observation: Experimental Evidence. Entropy 2024, 26, 255. [CrossRef]
29. Bormashenko, E. The Landauer Principle: Re-Formulation of the Second Thermodynamics Law or a Step to Great Unification? Entropy 2019, 21, 918. [CrossRef]
30. Maroney, O.J.E. Generalizing Landauer’s principle. Phys. Rev. E 2009, 79, 031105. [CrossRef] [PubMed]
31. Esposito, M.; Van den Broeck, C. Second law and Landauer principle far from equilibrium. Europhys. Lett. 2011, 95, 40004. [CrossRef]