智源社区 4小时前
兰道尔原理:连接信息与物理测量的桥梁
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了物理系统计算的根本限制,涉及量子力学、热力学和信息论等多个交叉领域。文章深入研究了Landauer原理,该原理指出擦除信息需要消耗能量,并将此原理与计算速度、能量耗散以及信息本身的物理性质联系起来。此外,还讨论了Bremermann极限和Margolus-Levitin定理等其他计算限制,并考察了它们在实际物理系统中的意义。通过对这些极限的分析,文章旨在揭示计算的物理基础,并为未来计算技术的发展提供理论指导。

🔥Landauer原理是核心概念,它阐述了擦除一位信息需要消耗至少kTln2的能量,其中k是玻尔兹曼常数,T是绝对温度。这一原理将信息处理与热力学第二定律联系起来,意味着计算并非完全抽象的过程,而是受到物理定律约束的。

⏱️Bremermann极限指出,在有限的时间内,任何物理系统所能处理的信息量都存在上限。这一极限源于量子力学的不确定性原理,表明能量和时间之间存在着制约关系,从而限制了计算的速度。

🌌Margolus-Levitin定理则从量子力学的角度给出了计算速度的上限,它指出一个量子系统从一个状态演化到另一个正交状态所需的最短时间与系统的能量有关。这意味着量子计算的速度也受到物理定律的限制。

⚖️文章还讨论了信息与质量、能量之间的关系,探讨了信息是否具有质量,以及信息存储和处理是否会对周围时空产生影响。这些问题涉及广义相对论和量子力学的交叉领域,是当前物理学研究的前沿方向。

1. Adamatzky, A. Computing in Nonlinear Media and Automata Collectives; Institute of Physics Publishing: Bristol, UK, 2001.

2. Lloyd, S. The Universe as Quantum Computer, A Computable Universe: Understanding and Exploring Nature as Computation; World Scientific: Singapore, 2013.

3. Miller, J.F.; Harding, S.L.; Tufte, G. Evolution-in-materio: Evolving computation in materials. Evol. Intel. 2014, 7, 49–67. [CrossRef]

4. Piccinini, G.; Maley, C. Computation in physical systems. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2010; Available online: https://plato.stanford.edu/archives/sum2021/entries/computation-physicalsystems (accessed on 16 April 2025).

5. Markov, I. Limits on fundamental limits to computation. Nature 2014, 512, 147–154. [CrossRef]

6. Liu, Y.C.; Huang, K.; Xiao, Y.-F.; Yang, L.; Qiu, C.W. What limits limits? Nat. Sci. Rev. 2021, 8, nwaa210. [CrossRef]

7. Bormashenko, E. Landauer Bound in the Context of Minimal Physical Principles: Meaning, Experimental Verification, Controversies and Perspectives. Entropy 2024, 26, 423. [CrossRef] [PubMed]

8. Hecht, E. Modern Optics. In Optics, 4th ed.; Addison-Wesley: Reading, MA, USA, 2002; Chapter 13; pp. 609–611.

9. Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Non-Relativistic Theory, 3rd ed.; Pergamon Press: Oxford, UK, 1977; Volume 3, Chapter 2; pp. 46–49.

10. Bremermann, H.J. Optimization through evolution and recombination. In Self-Organizing Systems 1962; Yovits, M.C., Jacobi, G.T., Goldstein, G.D., Eds.; Spartan Books: Washington, DC, USA, 1962; pp. 93–106.

11. Mandelstam, L.; Tamm, I. The Uncertainty Relation Between Energy and Time in Non-Relativistic Quantum Mechanics, in Selected Papers; Bolotovskii, B.M., Frenkel, V.Y., Peierls, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1991.

12. Hörnedal, N.; Sönnerborn, O. Margolus-Levitin quantum speed limit for an arbitrary fidelity. Phys. Rev. Res. 2023, 5, 043234. [CrossRef]

13. Margolus, M.; Levitin, L.B. The maximum speed of dynamical evolution. Phys. D Nonlinear Phenomena 1998, 120, 188–195. [CrossRef]

14. Landauer, R. Dissipation and heat generation in the computing process. IBM J. Res. Dev. 1961, 5, 183.[CrossRef]

15. Landauer, R. Information is physical. Phys. Today 1991, 44, 5, 23–29. [CrossRef]

16. Landauer, R. Minimal energy requirements in communication. Science 1996, 272, 1914–1918. [CrossRef]

17. Bennett, C.H.; Landauer, R. The fundamental physical limits of computation. Sci. Am. 1985, 253, 48–57. [CrossRef]

18. Maroney, O.J.E. The (absence of a) relationship between thermodynamic and logical reversibility. Stud. Hist. Philos. Sci. B 2005, 36, 355–374. [CrossRef]

19. Piechocinska, B. Information erasure. Phys. Rev. A 2000, 61, 062314. [CrossRef]

20. Parrondo, J.M.R.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nat. Phys. 2015, 11, 131–139. [CrossRef]

21. Sagawa, T. Thermodynamic and logical reversibilities revisited. J. Stat. Mech. 2014, 2014, P03025. [CrossRef]

22. Herrera, L. The mass of a bit of information and the Brillouin’s principle. Fluct. Noise Lett. 2014, 13, 1450002. [CrossRef]

23. Herrera, L. Landauer Principle and General Relativity. Entropy 2020, 22, 340. [CrossRef] [PubMed]

24. Bormashenko, E. Generalization of the Landauer Principle for Computing Devices Based on Many-Valued Logic. Entropy 2019, 21, 1150. [CrossRef]

25. Hartnoll, S.A.; Mackenzie, A.P. Colloquium: Planckian dissipation in metals. Rev. Mod. Phys. 2022, 94, 041002. [CrossRef]

26. Wheeler, J.A. Information, physics, quantum: The search for links. In Proceedings of the 3rd International Symposium on Foundations of Quantum Mechanics in the Light of New Technology, Tokyo, Japan, 28–31 August 1989; pp. 354–368.

27. Vopson, M. The mass-energy-information equivalence principle. AIP Adv. 2019, 9, 095206. [CrossRef]

28. Müller, J.G. Events as Elements of Physical Observation: Experimental Evidence. Entropy 2024, 26, 255. [CrossRef]

29. Bormashenko, E. The Landauer Principle: Re-Formulation of the Second Thermodynamics Law or a Step to Great Unification? Entropy 2019, 21, 918. [CrossRef]

30. Maroney, O.J.E. Generalizing Landauer’s principle. Phys. Rev. E 2009, 79, 031105. [CrossRef] [PubMed]

31. Esposito, M.; Van den Broeck, C. Second law and Landauer principle far from equilibrium. Europhys. Lett. 2011, 95, 40004. [CrossRef]

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Landauer原理 计算极限 物理计算 信息物理学
相关文章