References:
[1]Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and David Sculley. Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pages 1487–1495, 2017.
[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pages 2623–2631, 2019.
[3] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, Andrew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. In NeurIPS, 2020.
[4] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, AndrÅLe Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, RenÅLe Sass, and Frank Hutter. Smac3: A versatile bayesian optimization package for hyperparameter optimization. Journal of Machine Learning Research, 23(54):1–9, 2022.
[5] Konstantinos Kanellis, Cong Ding, Brian Kroth, Andreas MÅNuller, Carlo Curino, and Shivaram Venkataraman. Llamatune: sample-efficient dbms configuration tuning. Proceedings of the VLDB Endowment, 15(11):2953–2965, 2022.
[6] Xinyi Zhang, Hong Wu, Yang Li, Jian Tan, Feifei Li, and Bin Cui. Towards dynamic and safe configuration tuning for cloud databases. In Proceedings of the 2022 International Conference on Management of Data, pages 631–645, 2022c.
[7] Chumeng Liang, Zherui Huang, Yicheng Liu, Zhanyu Liu, Guanjie Zheng, Hanyuan Shi, Yuhao Du, Fuliang Li, and Zhenhui Li. Cblab: Scalable traffic simulation with enriched data supporting. arXiv preprint arXiv:2210.00896, 2022.
[8] Wentao Zhang, Yu Shen, Zheyu Lin, Yang Li, Xiaosen Li, Wen Ouyang, Yangyu Tao, Zhi Yang, and Bin Cui. Pasca: A graph neural architecture search system under the scalable paradigm. In Proceedings of the ACM Web Conference 2022, pages 1817–1828, 2022a.
[9] Xinyi Zhang, Zhuo Chang, Yang Li, Hong Wu, Jian Tan, Feifei Li, and Bin Cui. Facilitating database tuning with hyper-parameter optimization: a comprehensive experimental evaluation. Proceedings of the VLDB Endowment, 15(9):1808–1821, 2022b.
[10] Huaijun Jiang, Yu Shen, and Yang Li. Automated hyperparameter optimization challenge at cikm 2021 analyticcup. arXiv preprint arXiv:2111.00513, 2021.
[11] Yang Li, Huaijun Jiang, Yu Shen, Yide Fang, Xiaofeng Yang, Danqing Huang, Xinyi Zhang, Wentao Zhang, Ce Zhang, Peng Chen, and Bin Cui. Towards general and efficient online tuning for spark. Proc. VLDB Endow., 16(12):3570–3583, 2023.
[12] Yu Shen, Xinyuyang Ren, Yupeng Lu, Huaijun Jiang, Huanyong Xu, Di Peng, Yang Li, Wentao Zhang, and Bin Cui. Rover: An online spark sql tuning service via generalized transfer learning. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 4800–4812, 2023.