MarkTechPost@AI 前天 08:00
Marktechpost Releases 2025 Agentic AI and AI Agents Report: A Technical Landscape of AI Agents and Agentic AI
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Marktechpost AI Media发布了其2025年《Agentic AI和AI Agents报告》,深入探讨了塑造AI Agent未来的架构、框架和部署策略。报告涵盖了整个Agentic AI堆栈,描绘了一个建立在具备推理能力的模型、记忆框架和为现实世界任务量身定制的编排引擎之上的不断增长的生态系统。与传统助手不同,Agentic AI系统能够自主运行、做出决策并随着时间的推移而学习,标志着AI实用性的根本性演变。

🤖 Agentic AI的核心在于自主性:与依赖预编程逻辑或被动指令的机器人或助手不同,Agentic AI系统能够独立操作、决策并随时间学习。它们不仅仅是语言模型的封装,而是整合了规划、工具使用、多模态理解和持久记忆。

🧱 Agent架构:报告将现代AI Agent分解为模块化组件,包括模型(核心推理器,如LLMs和多模态转换器)、工具接口(API、浏览器和数据库)、记忆系统(实现长期连贯性和个性化行为)、角色与意图层(指导行为建模)以及编排层(管理状态、工作流程执行和跨环境通信)。

🛠️ 关键开发框架:报告重点介绍了25个以上的生产级平台和框架,如CrewAI(高性能多Agent框架)、LangGraph(基于图的框架)以及Google Vertex AI Agent Builder和Salesforce Agentforce等。这些平台提供了从无代码原型设计到代码优先编排的各种方法,都围绕着记忆保留、工具互操作性和可组合逻辑。

⚙️ 运营基础设施:报告还探讨了支撑Agentic系统的更广泛的运营堆栈,包括模型服务和托管平台(如Fireworks AI、Baseten)、记忆引擎(如ZEP、Whyhow.ai)以及评估和安全性工具(如Patronus AI、Haize Labs)。 Unsloth AI是一个值得关注的开源工具包,用于低成本微调和量化开源模型。

🔮 未来展望:Agentic AI正从理论走向实际应用,报告强调了行业加速融合语言、推理和软件交互,形成内聚的自主系统。随着组织在各个领域(从客户服务到供应链编排)嵌入Agent,重点将转向长期记忆、可扩展的编排和超越传统基准的稳健评估指标。

Marktechpost AI Media has unveiled its most comprehensive publication—The Agentic AI and AI Agents Report for 2025—delivering a technically rigorous exploration into the architectures, frameworks, and deployment strategies shaping the future of AI agents. The report spans the full agentic AI stack, mapping out a growing ecosystem built on reasoning-capable models, memory frameworks, and orchestration engines purpose-built for real-world tasks.

Redefining AI with Autonomy

Unlike conventional assistants, agentic AI systems are defined by their ability to operate independently, make decisions, and learn over time. These agents are not just language model wrappers—they integrate planning, tool use, multimodal understanding, and persistent memory. The shift from prompt-based interaction to autonomous goal execution marks a foundational evolution in AI utility.

Agents act with clear intent: executing tasks, synthesizing context across modalities, collaborating with humans or other agents, and iteratively refining their strategies. This proactive behavior distinguishes them from bots or assistants that rely on preprogrammed logic or reactive instruction following.

Agent Architecture: A Modular Stack

The report dissects the anatomy of modern AI agents into distinct, modular components:

This architecture supports both single-agent pipelines and collaborative multi-agent systems designed for coordinated task execution in complex enterprise workflows.

Agent Development Frameworks

Marktechpost’s report catalogs over 25 production-grade platforms and frameworks. Notable among them:

These platforms demonstrate diverse approaches—from no-code prototyping to code-first orchestration—while aligning around common principles: memory retention, tool interoperability, and composable logic.

Infrastructure, Evaluation, and Observability

The report addresses the broader operational stack underpinning agentic systems:

Of particular note is Unsloth AI, an open-source toolkit for low-cost fine-tuning and quantization of open models like LLaMA and Qwen. It enables developers to train domain-specialized agents using synthetic data—entirely offline and on consumer-grade hardware.

A Converging Future

Agentic AI is moving from theoretical promise to operational reality. Marktechpost’s 2025 report highlights the industry’s accelerating push to converge language, reasoning, and software interaction into cohesive autonomous systems.

As organizations embed agents across domains—from customer service to supply chain orchestration—the focus will shift toward long-term memory, scalable orchestration, and robust evaluation metrics that go beyond traditional benchmarks. The future of AI will not be scripted—it will be agentic.

Access the Full Report: Download from Marktechpost

The post Marktechpost Releases 2025 Agentic AI and AI Agents Report: A Technical Landscape of AI Agents and Agentic AI appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Agentic AI AI Agent 人工智能 Marktechpost
相关文章