ΑΙhub 05月19日 17:04
#AAAI2025 workshops round-up 3: Neural reasoning and mathematical discovery, and AI to accelerate science and engineering
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文总结了在第39届AAAI人工智能大会(AAAI 2025)上举办的两个研讨会。第一个研讨会探讨了神经推理与数学发现之间的跨学科联系,强调了神经网络在自动生成数学猜想和几何学方面的潜力,同时也指出了其在符号级逻辑推理方面的局限性。第二个研讨会聚焦于利用AI加速科学与工程的发展,特别是针对生物科学领域,旨在促进AI工具的开发和应用,推动AI研究者与领域专家之间的合作。研讨会涵盖了广泛的主题,包括基础模型、生成模型、因果推断等,并探讨了AI在生物科学中的应用前景及挑战。

🧠 **神经推理与数学发现研讨会:** 该研讨会探讨了神经网络在数学领域的应用,展示了其在生成数学猜想和几何学方面的能力,但同时也指出了其在实现符号级逻辑推理方面的局限性。研讨会强调了跨学科方法的重要性,包括哲学、神经科学、数学建模和人工智能神经网络,以推动科学研究。

🧪 **AI加速科学与工程研讨会:** 该研讨会聚焦于利用AI加速科学发现和工程设计,特别关注AI在生物科学领域的应用。研讨会旨在识别和理解将AI应用于特定科学和工程问题时面临的挑战,开发和改进AI工具,并促进AI研究人员与领域专家之间的合作。

🔬 **研讨会主题与内容:** 研讨会涵盖了广泛的主题,包括基础模型在治疗设计中的应用、生成模型在药物发现中的作用、深度学习在基因组学中的应用以及因果推断在生物学应用中的重要性。演讲者们还讨论了生成模型在AI生物科学中的挑战和机遇,以及如何在领域科学家/工程师和AI专家之间建立有效的合作。

🌱 **应用领域与合作:** 研讨会展示了AI在材料科学、化学、生物科学、农业科学、物理学、制造业和能源系统等领域的广泛应用。同时,研讨会也强调了建立AI研究者与领域专家之间合作的重要性,以推动AI在科学与工程领域的进一步发展。

Images from the workshop on “Neural Reasoning and Mathematical Discovery – An Interdisciplinary Two-Way Street”.

In this series of articles, we’re publishing summaries with some of the key takeaways from a few of the workshops held at the 39th Annual AAAI Conference on Artificial Intelligence (AAAI 2025). In this third round-up article, we hear from the organisers of the workshops on:


Neural Reasoning and Mathematical Discovery – An Interdisciplinary Two-Way Street

By Tiansi Dong

Organisers: Challenger Mishra, Mateja Jamnik, Pietro Liò, Tiansi Dong.

Recent progress in Sphere Neural Networks demonstrates various possibilities for neural networks to achieve symbolic-level reasoning. This workshop aimed to reconsider various problems and discuss walk-round solutions in the two-way street commingling of neural networks and mathematics.

Some key takeaways from the workshop were as follows:


AI to Accelerate Science and Engineering

By Aryan Deshwal

Organisers: Aryan Deshwal, Jana Doppa, Syrine Belakaria, Vipin Kumar and Carla Gomes.

This workshop brought together researchers from artificial intelligence and diverse scientific domains to address new challenges towards accelerating scientific discovery and engineering design. This was the fourth iteration of the workshop, with the theme of AI for biological sciences following previous three years’ themes of AI for chemistry, earth sciences, and materials/manufacturing respectively. This workshop aims to achieve the following goals: 1. Identify and understand the challenges in applying AI to specific science and engineering problems. 2. Develop, adapt, and refine AI tools for novel problem settings and challenges. 3. Community-building and education to encourage collaboration between AI researchers and domain area experts.

The workshop has been growing significantly every year and saw double the number of papers presented and attendees this year. The program featured presentations from invited speakers, panel session and poster sessions covering a wide range of AI/ML methods and scientific/engineering applications.

The invited speakers’ presentations centered around several key themes:

The invited speakers also discussed their views on open challenges in the broader field. The panel discussion addressed important questions regarding challenges and opportunities with generative models in AI for biological sciences, how to establish effective collaborations between domain scientists/engineers and AI experts, and safety considerations for AI systems in the scientific context.

The papers presented at the workshop covered wide-ranging application areas including materials science, chemistry, biological sciences, agricultural sciences, physics, manufacturing, and energy systems.


You can read the other workshop summary articles here:

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AAAI 2025 人工智能 科学与工程 神经网络 生物科学
相关文章