虎嗅 05月15日 17:18
梁文锋署名DeepSeek新论文:公开V3大模型降本方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

DeepSeek团队发布的DeepSeek-V3论文,揭示了如何通过创新技术解决大模型训练和推理中的硬件瓶颈。文章重点介绍了四项关键技术:多头潜在注意力、混合专家模型、FP8低精度训练、多层网络拓扑与低延迟设计,以及多token预测。这些优化使得DeepSeek-V3能够在有限的硬件资源下,实现高效的训练和推理,为大模型的发展提供了新的思路,并对下一代AI硬件的设计提出了展望。

🧠 多头潜在注意力机制:通过压缩键值对,减少显存占用,尤其适用于处理长文本,使KV缓存大小每token仅需70 KB,是传统方法的1/7到1/4。

💡 混合专家模型(MoE)与FP8低精度训练:MoE技术每次只激活部分专家处理输入,大幅减少计算量,而FP8低精度训练可将内存占用和计算量减半,且精度损失小于0.25%,降低了50%的训练成本。

🚀 多层胖树网络与流水线并行:采用多层胖树网络优化通信,降低延迟,支持上万GPU扩展;推理时,利用流水线并行,提升吞吐量近1倍。

⚡️ 多token预测:通过轻量级子模型并行预测多个候选token,加速推理速度,生成速度提升1.8倍,同时保持准确率在80%~90%。

梁文锋亲自参与的DeepSeek最新论文,来了!

这一次,团队把DeepSeek-V3在训练和推理过程中,如何解决“硬件瓶颈”的方法公布了出来。

具体而言,DeepSeek-V3之所以可以只用2048块H800,就能达到超大规模集群相当的训练效果,核心在于四项创新技术:

多头潜在注意力

混合专家模型与FP8低精度训练

多层网络拓扑与低延迟设计

多token预测

那么这四项优化具体又是如何起到作用的,我们继续往下看。

一、软硬件协同的优化设计

在训练大模型这条路上,可以说一直有“三座大山”在占道。

首先就是内存不够用

现在的大语言模型变得越来越庞大,需要的存储空间激增。特别是它们使用的“注意力机制”会产生大量临时数据,占用大量显卡内存。

但高性能显存的容量增长太慢了,每年才增加不到50%,远远跟不上需求。

其次是计算效率低

训练超大规模模型需要海量计算资源,传统 “稠密模型”每次计算都要激活所有参数,导致计算成本极高。

而 “混合专家模型”虽然更高效,但需要复杂的通信机制,对网络带宽要求极高。

最后就是通信速度慢

当使用多个GPU一起训练时,它们之间需要不断交换数据,这个过程会产生延迟。即使用了高速网络,这种延迟仍然会拖慢整体训练速度,尤其是处理长文本或需要实时响应时更明显。

而这篇论文所要解决的,正是上述的这些老大难的问题。

△DeepSeek-V3的基本架构

DeepSeek团队首先是对内存进行了优化,所采用的方法则是多头潜在注意力,为的就是减少 “键值缓存”的内存占用。

传统模型每个注意力头都需要独立缓存键值对,而MLA通过投影矩阵将所有头的键值对压缩成一个更小的 “潜在向量”,只需缓存这一向量。

相比其他模型,DeepSeek-V3的KV缓存大小每token仅需70 KB,是传统方法的1/7到1/4,大幅降低显存压力,尤其适合长文本处理。

在计算优化方面,DeepSeek-V3所采用的方法,则是MoE和FP8低精度训练。

MoE,即将模型参数分成多个 “专家”,每次只激活部分专家处理输入,显著减少实际计算量。

DeepSeek-V3采用类似的思路,其总参数虽然是6710亿,但每次仅激活370亿参数,训练成本仅为同规模稠密模型的1/10。

也正因推理时激活参数少,DeepSeek-V3可在消费级GPU上运行,每秒生成近20个token,适合个人或中小型企业使用。

至于FP8低精度训练,不同于传统训练使用BF16,可将内存占用和计算量减半,同时通过 “精细量化”保持精度。

而DeepSeek-V3是首次在开源大模型中成功应用FP8训练,训练成本降低50%,且精度损失小于0.25%。

除此之外,DeepSeek-V3在通信方面也做了相应的优化。

例如多层胖树网络,将集群网络分为多个 “平面”,每个GPU连接到独立的网络平面,避免不同任务的流量冲突。

相比传统三层网络,两层结构成本降低40%,延迟减少30%,支持上万GPU扩展。

DeepSeek-V3在做推理时,还将 “注意力计算” 与 “专家间通信” 分阶段执行,利用流水线并行让GPU在计算时同时传输数据,避免空闲等待,吞吐量提升近1倍。

最后,在推理加速方面,DeepSeek-V3采用的是多token预测的方法。

传统模型每次只能生成1个token,而MTP通过轻量级子模型并行预测多个候选token,验证后选择最优结果。

从实验效果来看,生成速度提升1.8倍,例如每秒生成 oken数从10个增至18个,同时保持准确率在80%~90%。

以上就是DeepSeek-V3通过硬件与模型的协同设计,在有限资源下可以实现高效训练和推理的关键技术了。

不过除此之外,这篇论文还对未来的工作有着一定的启发作用。

二、从“被动适配”到“主动设计”

既然已经知道了当前AI在硬件上的瓶颈,就可以提出对下一代AI硬件的期待。

DeepSeek团队从五大维度做出了展望,希望在这一方面能够从过去的“被动适配”逐步过渡到“主动设计”。

1. 低精度计算支持

针对计算效率低的问题,下一代的AI硬件需要提高累积寄存器的精度,支持FP32累加,或可配置精度。这样才能在不同的模型训练和推理需求中实现性能和准确性的平衡。

硬件还需要支持本地的细粒度量化,使张量核心能够直接接收缩放因子,在计算单元内部完成量化和反量化,减少数据搬运。

此外,建议支持LogFMT,在相同比特宽度下提供更高精度,并提高编解码的速度。

2. 扩展与扩展融合

针对传输速度慢的问题,建议未来的硬件将节点内和节点间的通信整合到一个统一的框架中,通过集成专门用于网络流量管理的协处理器。

这样的设计可以降低软件复杂性并最大化带宽利用率,包括以下内容:

    统一网络适配器:设计连接到统一扩展和缩减网络的NIC或I/O芯片,让网卡直接支持所有通信需求。

    专用通信协处理器:将数据搬运、Reduce、类型转换等任务卸载到专用硬件,释放GPU SM资源。

    增加智能传输功能:自动转发数据,支持广播和汇总操作,并自动处理数据顺序问题。

    CPU-FPU高速互联:用NVLink连接CPU与GPU,进一步优化节点内通讯。

3. 网络拓扑优化

针对网络卡顿的问题,建议以太网供应商开发专门针对RDMA工作负载进行优化的RoCE交换机,移除不必要的以太网功能。

还需要优化路由策略,支持自适应路由通过动态向多个路径发送数据包,即可显著提高网络性能。

或者可以通过虚拟输出队列改进流量隔离或拥塞控制机制,隔离不同流量,避免拥塞。

4. 内存系统优化

针对AI模型记性越来越差,聊天时难以记住上下文的问题,可以通过3D堆叠DRAM的方法,把内存芯片像三明治一样叠在计算芯片上。

或者学习Cerebras,直接在晶圆上进行集成工程,最大化内存带宽和计算密度,让硬件能记得更多。

又或者,在硬件存储层部署稀疏注意力加速器,让硬件直接帮忙整理记忆,只记重点。

5. 鲁棒性与容错

针对大规模训练中网络闪断、GPU故障会导致任务失败的问题,期待下一代硬件能够支持链路层重试和快速故障切换,在闪断后能够立刻自己找备用路线。

还可以增加基于信用的流控+ 智能拥塞控制算法,避免网络集体卡死。

简单来说,下一代AI硬件要向算数快、传话快、记性好、不宕机的方向改进,才能更好地应用于大模型训练,实现高效扩展。

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

DeepSeek-V3 大模型 硬件优化 人工智能
相关文章