IT之家 05月15日 07:28
Meta 推出 CATransformers 框架,AI 减排新利器
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Meta AI 旗下 FAIR 团队与佐治亚理工学院合作,推出了 CATransformers 框架,旨在通过联合优化模型架构与硬件性能,降低 AI 技术的碳足迹。该框架将碳排放作为核心设计考量,通过多目标贝叶斯优化引擎,平衡延迟、能耗、精度和总碳足迹。研究表明,综合优化碳排放与延迟的策略可显著削减总排放量,为可持续机器学习系统设计奠定基础。CATransformers 的推出为 AI 行业提供了一条切实可行的减排路径,推动 AI 技术在可持续发展的道路上前进。

🌱CATransformers 框架由 Meta AI 旗下 FAIR 团队与佐治亚理工学院合作开发,核心目标是将碳排放纳入 AI 模型和硬件设计的考量之中,旨在降低 AI 技术的环境代价。

💡该框架采用多目标贝叶斯优化引擎,联合评估模型架构与硬件加速器的性能,从而在延迟、能耗、精度和总碳足迹之间寻求最佳平衡点。

🔬针对边缘推理设备,CATransformers 通过剪枝大型 CLIP 模型生成变体,并结合硬件估算工具分析碳排放与性能。例如,CarbonCLIP-S 与 TinyCLIP-39M 精度相当,但碳排放降低 17%,延迟控制在 15 毫秒内。

📊研究显示,单纯优化延迟的设计可能导致隐含碳增加高达 2.4 倍,而综合优化碳排放与延迟的策略可实现 19-20% 的总排放削减,且延迟损失极小。

IT之家 5 月 15 日消息,科技媒体 marktechpost 昨日(5 月 14 日)发布博文,报道称 Meta AI 旗下 FAIR 团队携手佐治亚理工学院,合作开发 CATransformers 框架,将碳排放作为核心设计考量,通过联合优化模型架构与硬件性能,显著降低总碳足迹,为可持续 AI 发展迈出重要一步。

机器学习技术的普及推动了从推荐系统到自动驾驶的革新,但其环境代价不容小觑。这些系统需要强大计算资源,常依赖定制硬件加速器运行,训练和推理阶段的高能耗直接导致运营碳排放攀升。

此外,硬件从制造到报废的全生命周期也产生“隐含碳”,加剧生态负担。随着全球各行业加速采用 AI 技术,解决运营与隐含碳的双重来源成为迫切需求。

当前减排方法主要集中于提升运营效率,例如优化训练和推理的能耗,或提高硬件利用率。但这些方法往往忽略硬件设计和制造阶段的碳排放,未能整合模型设计与硬件效率的相互影响。

Meta 的 FAIR 团队与佐治亚理工学院联合推出的 CATransformers 框架,将碳排放纳入核心设计考量。该框架通过多目标贝叶斯优化引擎,联合评估模型架构与硬件加速器的性能,平衡延迟、能耗、精度和总碳足迹。

特别针对边缘推理设备,CATransformers 通过剪枝大型 CLIP 模型生成变体,并结合硬件估算工具分析碳排放与性能。其成果 CarbonCLIP-S 与 TinyCLIP-39M 精度相当,但碳排放降低 17%,延迟控制在 15 毫秒内;CarbonCLIP-XS 则比 TinyCLIP-8M 精度提升 8%,碳排放减少 3%,延迟低于 10 毫秒。

研究显示,单纯优化延迟的设计可能导致隐含碳增加高达 2.4 倍,而综合优化碳排放与延迟的策略可实现 19-20% 的总排放削减,且延迟损失极小。

CATransformers 通过嵌入环境指标,为可持续机器学习系统设计奠定基础。这表明,AI 开发若从一开始就结合硬件能力与碳影响考量,可实现性能与可持续性的双赢。随着 AI 规模持续扩大,该框架为行业提供了切实可行的减排路径。

IT之家附上参考地址

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

CATransformers Meta AI 可持续AI 碳排放
相关文章