MarkTechPost@AI 2024年07月09日
This AI Paper from Cohere for AI Presents a Comprehensive Study on Multilingual Preference Optimization
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Cohere For AI的研究人员提出了一种新颖且可扩展的方法,用于生成高质量的多语言偏好数据,旨在平衡数据覆盖范围并提升多语言大型语言模型(LLM)的性能。该方法利用多个LLM生成的多种语言提示和完成,以增加数据多样性并避免翻译伪影。研究结果表明,这种方法显著提高了多语言LLM的性能,在多个基准测试中取得了领先优势。

🤔 **多语言偏好优化:提升AI模型跨语言能力** Cohere For AI的研究人员提出了一种新颖且可扩展的方法,用于生成高质量的多语言偏好数据,旨在平衡数据覆盖范围并提升多语言大型语言模型(LLM)的性能。该方法利用多个LLM生成的多种语言提示和完成,以增加数据多样性并避免翻译伪影。 研究人员将约50,000个英文提示翻译成22种其他语言,并使用这些提示在每种语言中生成完成,确保数据的高度多样性和质量。研究结果表明,这种方法显著提高了多语言LLM的性能,在多个基准测试中取得了领先优势。 例如,在使用5种语言进行训练时,模型在未见语言上的胜率为54.9%,而仅使用英文训练时,胜率仅为46.3%。此外,在线偏好优化方法,如来自人类反馈的强化学习(RLHF),被证明比离线方法,如直接偏好优化(DPO)更有效。在线技术实现了更高的胜率,在某些情况下,RLOO比DPO的胜率高出10.6%。

💪 **解决多语言NLP中的挑战** 多语言自然语言处理(NLP)是一个快速发展的领域,旨在开发能够理解和生成多种语言文本的语言模型。这些模型促进跨越不同语言背景的有效沟通和信息获取。该领域的重要性在于其在弥合不同语言使用者之间的差距方面的潜力,使人工智能技术的进步在全球范围内可用。然而,由于同时处理多种语言的复杂性,开发此类模型面临着重大挑战。 多语言NLP中的一个主要问题是主要关注少数主要语言,例如英语和中文。这种狭隘的关注导致模型在应用于不太常用的语言时,性能差距显著。因此,许多语言仍然需要被表示,限制了人工智能技术的适用性和公平性。解决这种差异需要采用创新方法来提高多语言数据集的质量和多样性,确保人工智能模型能够在广泛的语言范围内有效地执行。

🚀 **研究结果:显著提升模型性能** 该研究使用多个基准测试评估了偏好训练模型的性能,包括Aya 23 8B、Gemma-1.1-7B-it、Meta-Llama3-8B-Instruct和Mistral-7B-Instruct-v0.3。结果表明,偏好训练模型在这些基准测试中取得了显著的优势。 例如,偏好训练模型在Aya 23 8B上的胜率为54.4%,而该模型是其参数类别中当前领先的多语言LLM。此外,该模型在其他广泛使用的模型上的胜率也达到了69.5%或更高。这些结果突出了研究人员方法的有效性,通过增强的偏好优化,提高了多语言LLM的性能。 研究还表明,增加训练数据中的语言数量会持续提高模型的性能。例如,使用五种语言进行训练,模型在未见语言上的胜率为54.9%,而仅使用英文训练时,胜率仅为46.3%。

📊 **数据多样性与模型性能** 传统上,提高多语言语言模型的性能通常涉及将偏好数据从英语翻译成其他语言。虽然这种策略在一定程度上有所帮助,但它也带来了几个问题,包括可能降低模型性能的翻译伪影。过度依赖翻译会导致数据缺乏多样性,而数据多样性对于稳健的模型训练至关重要。通过人工标注收集高质量的多语言偏好数据是一种潜在的解决方案,但它既昂贵又耗时,对于大规模应用来说不切实际。

📚 **结论:多语言数据对模型性能的重要性** Cohere For AI进行的研究表明,高质量、多样化的多语言数据对于训练有效的多语言语言模型至关重要。研究团队提出的创新方法解决了数据稀缺和质量方面的挑战,从而在广泛的语言范围内提高了性能。该研究不仅为多语言偏好优化设定了新的基准,而且强调了在线训练方法在实现卓越的跨语言迁移和整体模型性能方面的价值。 该研究为多语言NLP的发展提供了新的思路,也为未来AI模型的跨语言能力提升提供了重要参考。

Multilingual natural language processing (NLP) is a rapidly advancing field that aims to develop language models capable of understanding & generating text in multiple languages. These models facilitate effective communication and information access across diverse linguistic backgrounds. This field’s importance lies in its potential to bridge the gap between different language speakers, making technological advancements in AI accessible globally. However, developing such models presents significant challenges due to the complexities of handling multiple languages simultaneously.

One of the main issues in multilingual NLP is the predominant focus on a few major languages, such as English and Chinese. This narrow concentration results in a significant performance gap for models when applied to less commonly spoken languages. Consequently, many languages still need to be represented, limiting AI technologies’ applicability and fairness. Addressing this disparity requires innovative approaches to enhance the quality and diversity of multilingual datasets, ensuring that AI models can perform effectively across a broad spectrum of languages.

Traditional methods for improving multilingual language models often involve translating preference data from English to other languages. While this strategy helps somewhat, it introduces several problems, including translation artifacts that can degrade model performance. Relying heavily on translation can lead to a lack of diversity in the data, which is crucial for robust model training. Collecting high-quality multilingual preference data through human annotation is a potential solution, but it is both expensive and time-consuming, making it impractical for large-scale applications.

Researchers from Cohere For AI have developed a novel, scalable method for generating high-quality multilingual feedback data. This method aims to balance data coverage and improve the performance of multilingual large language models (LLMs). The research team introduced a unique approach that leverages diverse, multilingual prompts and completions generated by multiple LLMs. This strategy not only increases the diversity of the data but also helps avoid the common pitfalls associated with translation artifacts. The models used in this research include Cohere’s Command and Command R+, specifically designed for multilingual capabilities.

The methodology involves translating approximately 50,000 English prompts into 22 additional languages using the NLLB 3.3B model. These prompts are then used to generate completions in each language, ensuring high diversity and quality in the data. The research team also compared completions generated directly in the target language to those translated from English, finding that the former significantly reduced the occurrence of translation artifacts. This approach resulted in a diverse set of multilingual preference pairs crucial for effective preference optimization.

The performance of the preference-trained model was evaluated against several state-of-the-art multilingual LLMs. The results were impressive, with the preference-trained model achieving a 54.4% win rate against Aya 23 8B, the current leading multilingual LLM in its parameter class. Additionally, the model showed a 69.5% win rate or higher against other widely used models such as Gemma-1.1-7B-it, Meta-Llama3-8B-Instruct, and Mistral-7B-Instruct-v0.3. These results highlight the effectiveness of the researchers’ approach in improving the performance of multilingual LLMs through enhanced preference optimization.

Further analysis revealed that increasing the number of languages in the training data consistently improved the model’s performance. For example, training with five languages resulted in a win rate of 54.9% on unseen languages, compared to 46.3% when training only in English. Moreover, online preference optimization methods, such as Reinforcement Learning from Human Feedback (RLHF), proved more effective than offline methods like Direct Preference Optimization (DPO). The online techniques achieved higher win rates, with RLOO outperforming DPO by a margin of 10.6% in some cases.

In conclusion, the research conducted by Cohere For AI demonstrates the critical importance of high-quality, diverse, multilingual data in training effective multilingual language models. The innovative methods introduced by the research team address the challenges of data scarcity and quality, resulting in performance improvements across a wide range of languages. The study not only sets a new benchmark for multilingual preference optimization but also underscores the value of online training methods in achieving superior cross-lingual transfer and overall model performance.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter

Join our Telegram Channel and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our 46k+ ML SubReddit

The post This AI Paper from Cohere for AI Presents a Comprehensive Study on Multilingual Preference Optimization appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多语言 NLP 偏好优化 LLM Cohere For AI
相关文章