MarkTechPost@AI 2024年07月07日
A Survey of Advanced Retrieval Algorithms in Ad and Content Recommendation Systems: Mechanisms and Challenges
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

这篇论文深入探讨了现代广告和内容推荐系统中使用的先进算法。这些系统在数字平台中驱动着用户参与和收入生成。论文考察了各种检索算法及其在广告定位和内容推荐中的应用,揭示了这些系统背后的机制以及它们面临的挑战。

🎯 **广告定位模型**:这些模型旨在向特定受众投放个性化广告。关键方法包括机器学习和倒排索引,这是一种数据结构,可以高效地将用户资料与相关广告匹配。常用的定位策略包括年龄、性别、再营销、关键词定位和行为定位。 * **倒排索引**:这种结构将内容映射到关键词或属性,从而实现快速高效的检索操作。它涉及从广告中创建索引,根据用户的在线活动对用户进行分类,并将用户资料与索引进行匹配以找到相关的广告。 * **年龄和性别定位**:广告根据用户注册期间收集的或从用户行为推断出的年龄和性别等人口统计信息进行投放。 * **再营销**:这种策略侧重于以前与网站互动但尚未完成所需操作(如购买)的用户。它使用来自 Cookie 和跟踪技术的的数据来显示相关广告。 * **关键词定位**:使用来自用户搜索查询或他们正在查看的内容的特定关键词来投放相关广告。大型语言模型 (LLM) 通过生成各种关键词变体来更有效地匹配用户意图,从而增强了这一点。 * **行为定位**:跟踪用户的活动,如浏览历史记录和社交媒体互动,以投放个性化广告。这种方法侧重于用户已表现出的兴趣和行为。

🚀 **有机检索系统**:有机检索系统旨在通过推荐与用户偏好相匹配的内容来改善用户体验,而无需直接的货币影响。这些系统用于各种领域,包括电子商务、流媒体服务和社交媒体平台。关键检索机制包括: * **基于内容的过滤**:根据用户表现出兴趣的项目的特征进行推荐。 * **协同过滤**:根据类似用户的偏好推荐项目,识别用户行为中的模式。 * **混合系统**:结合基于内容的过滤和协同过滤技术,以提高推荐的准确性和相关性。

🤖 **双塔模型**:双塔模型(也称为双塔模型)是一种广泛用于推荐系统的深度学习架构。它包含两个独立的神经网络:一个用于编码用户特征,另一个用于编码项目特征。该模型将用户和项目投影到一个共享的潜在空间中,在那里可以衡量它们的兼容性。该模型的关键组成部分包括: * **用户塔**:捕获和编码用户特征,例如人口统计信息和浏览历史记录。 * **项目塔**:编码项目特征,例如元数据、内容特征和上下文信息。

🏆 **结论**:研究得出结论,广告和内容推荐系统中的检索算法的格局不断发展。虽然这些系统增强了用户参与度并推动了收入,但它们也带来了数据质量和隐私问题等挑战。未来的研究应侧重于开发更复杂和合乎道德的检索算法,在个性化与用户隐私和数据完整性之间取得平衡。这种持续的创新对于满足不断增长的用户期望和扩展数字平台至关重要。这篇全面的调查为广告和内容推荐系统中检索算法的当前和未来方向提供了宝贵的见解,突出了它们在数字营销和用户参与策略中的关键作用。

Researchers from the University of Toronto present an insightful examination of the advanced algorithms used in modern ad and content recommendation systems. These systems drive user engagement and revenue generation in digital platforms. It explores various retrieval algorithms and their applications in ad targeting and content recommendation, shedding light on the mechanisms that power these systems and the challenges they face.

In the current digital landscape, personalized content and advertisements are essential for engaging users and driving revenue. Ad recommendation systems utilize detailed user profiles and behavioral data to deliver customized ads, maximizing user engagement and conversion rates. Conversely, content recommendation systems aim to enhance user experience by suggesting content that aligns with user preferences. This survey examines these systems’ most effective retrieval algorithms, highlighting their underlying mechanisms and challenges.

Ad Targeting Models

Ad targeting models are designed to deliver personalized advertisements to specific audiences. Key methodologies include machine learning and the inverted index, a data structure that efficiently matches user profiles with relevant ads. Various targeting strategies are employed, such as age, gender, re-targeting, keyword targeting, and behavioral targeting.

Organic Retrieval Systems

Organic retrieval systems aim to better user experience by recommending content that matches user preferences without direct monetary influence. These systems are used in various domains, including e-commerce, streaming services, and social media platforms. Key retrieval mechanisms include:

Two-Tower Model

The two-tower model, also known as the dual-tower model, is a deep learning architecture widely used in recommendation systems. It consists of two separate neural networks: one for encoding user features and the other for encoding item features. The model projects users and items into a shared latent space where their compatibility can be measured. Key components of this model include:

The training process involves optimizing latent representations to reflect the compatibility between user and item vectors accurately. The inference process involves generating dense vector representations for users and items and computing their similarity to provide real-time recommendations.

Conclusion

The research concludes that the landscape of retrieval algorithms in ad and content recommendation systems continuously evolves. While these systems enhance user engagement and drive revenue, they also present challenges like data quality and privacy concerns. Future research should focus on developing more sophisticated and ethical retrieval algorithms that balance personalization with user privacy and data integrity. This ongoing innovation is essential for meeting growing user expectations and expanding digital platforms. This comprehensive survey offers valuable insights into retrieval algorithms’ current and future directions in ad and content recommendation systems, highlighting their critical role in digital marketing and user engagement strategies.


Source: https://arxiv.org/pdf/2407.01712

The post A Survey of Advanced Retrieval Algorithms in Ad and Content Recommendation Systems: Mechanisms and Challenges appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

广告推荐 内容推荐 检索算法 双塔模型 机器学习 深度学习
相关文章