cs.AI updates on arXiv.org 05月06日 12:13
Integrating Column Generation and Large Neighborhood Search for Bus Driver Scheduling with Complex Break Constraints
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究公交车司机排班问题(BDSP),这是一个组合优化问题,旨在设计班次以覆盖预先安排的公交线路,同时考虑运营成本和司机满意度。文章提出了一种精确方法——分支定价法(B&P)以及一种大规模邻域搜索(LNS)框架,该框架使用B&P或列生成(CG)进行修复,以解决BDSP。此外,文章还提出并评估了一种B&P和LNS的深度集成方法,存储来自LNS子问题的生成列,并将其重用于其他子问题,或寻找更好的全局解。评估表明,该方法为各种规模的实例提供了新的最先进的结果,包括小型实例的精确解,以及中型实例与已知下限之间的低差距。

🚌 公交车司机排班问题(BDSP)是一个组合优化问题,目标是设计合理的司机班次,以覆盖预先安排好的公交线路,同时兼顾运营成本和司机的满意度,受到严格的法律规定和集体协议的约束。

💡 文章提出了一种精确的分支定价(B&P)方法和一个大规模邻域搜索(LNS)框架,LNS框架使用B&P或列生成(CG)进行修复,以此来解决BDSP问题。

🔄 提出并评估了一种新颖的B&P和LNS的深度集成方案,通过存储来自LNS子问题的生成列,并将其重用于其他子问题,或寻找更优的全局解决方案,从而提升求解质量。

📈 实验评估表明,所提出的方法在各种规模的实例上都取得了当前最优的结果,包括小型实例的精确解,以及中型实例与已知下界之间的较小差距。

arXiv:2505.02485v1 Announce Type: cross Abstract: The Bus Driver Scheduling Problem (BDSP) is a combinatorial optimization problem with the goal to design shifts to cover prearranged bus tours. The objective takes into account the operational cost as well as the satisfaction of drivers. This problem is heavily constrained due to strict legal rules and collective agreements. The objective of this article is to provide state-of-the-art exact and hybrid solution methods that can provide high-quality solutions for instances of different sizes. This work presents a comprehensive study of both an exact method, Branch and Price (B&P), as well as a Large Neighborhood Search (LNS) framework which uses B&P or Column Generation (CG) for the repair phase to solve the BDSP. It further proposes and evaluates a novel deeper integration of B&P and LNS, storing the generated columns from the LNS subproblems and reusing them for other subproblems, or to find better global solutions. The article presents a detailed analysis of several components of the solution methods and their impact, including general improvements for the B&P subproblem, which is a high-dimensional Resource Constrained Shortest Path Problem (RCSPP), and the components of the LNS. The evaluation shows that our approach provides new state-of-the-art results for instances of all sizes, including exact solutions for small instances, and low gaps to a known lower bound for mid-sized instances. Conclusions: We observe that B&P provides the best results for small instances, while the tight integration of LNS and CG can provide high-quality solutions for larger instances, further improving over LNS which just uses CG as a black box. The proposed methods are general and can also be applied to other rule sets and related optimization problems

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

公交车司机排班问题 组合优化 分支定价法 大规模邻域搜索 列生成
相关文章