In this tutorial, we’ll explore implementing various vision foundation models for business applications. We’ll focus on practical code implementation, technical details, and business use cases rather than theoretical aspects.
Setup and Environment Configuration
First, let’s set up our environment and install the necessary libraries:
!pip install torch torchvision transformers timm pillow matplotlib opencv-python tensorflow-hub tensorflow!pip install huggingface_hub sentence-transformers ftfy regex tqdm!pip install accelerate
# Verify CUDA availability for GPU acceleration
import torchprint(f"PyTorch version: {torch.__version__}")print(f"CUDA available: {torch.cuda.is_available()}")if torch.cuda.is_available(): print(f"CUDA device: {torch.cuda.get_device_name(0)}")
1. CLIP: Contrastive Language-Image Pre-training
CLIP by OpenAI excels at connecting images with natural language, making it powerful for zero-shot image classification and retrieval tasks.
Business Applications:
- Product image search and recommendationContent moderationVisual brand monitoringCross-modal retrieval systems
import torchfrom PIL import Imageimport requestsfrom transformers import CLIPProcessor, CLIPModelimport matplotlib.pyplot as pltimport numpy as np# Load model and processormodel_id = "openai/clip-vit-base-patch32"model = CLIPModel.from_pretrained(model_id)processor = CLIPProcessor.from_pretrained(model_id)# Function to get image embeddingsdef get_clip_image_embedding(image_path): image = Image.open(image_path) if isinstance(image_path, str) else image_path inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): image_features = model.get_image_features(**inputs) return image_features# Function to perform zero-shot classificationdef classify_image_with_clip(image_path, categories): image = Image.open(image_path) if isinstance(image_path, str) else image_path inputs = processor( text=categories, images=image, return_tensors="pt", padding=True ) with torch.no_grad(): outputs = model(**inputs) logits_per_image = outputs.logits_per_image probs = logits_per_image.softmax(dim=1) # Return dict of categories and probabilities return {categories[i]: probs[0][i].item() for i in range(len(categories))}# Example: Product categorizationurl = "https://images.unsplash.com/photo-1542291026-7eec264c27ff?q=80&w=1470&auto=format&fit=crop"image = Image.open(requests.get(url, stream=True).raw)product_categories = [ "sneakers", "formal shoes", "sandals", "boots", "sports equipment", "casual wear", "luxury item"]results = classify_image_with_clip(image, product_categories)# Sort results by probabilitysorted_results = dict(sorted(results.items(), key=lambda x: x[1], reverse=True))# Display the image and classification resultsplt.figure(figsize=(12, 6))# Plot the image on the leftplt.subplot(1, 2, 1)plt.imshow(np.array(image))plt.title("Input Image")plt.axis("off")# Plot the classification results on the rightplt.subplot(1, 2, 2)categories = list(sorted_results.keys())scores = list(sorted_results.values())y_pos = np.arange(len(categories))plt.barh(y_pos, scores, align="center")plt.yticks(y_pos, categories)plt.xlabel("Probability")plt.title("CLIP Classification Results")plt.tight_layout()plt.show()# Also print results to consoleprint("Classification Results:")for category, score in sorted_results.items(): print(f"{category}: {score:.4f}")
2. DINO v2: Self-supervised Vision Transformer
DINO v2 by Meta AI Research provides powerful visual features without requiring labeled data, making it excellent for various downstream tasks.
Business Applications:
- Visual similarity searchAnomaly detectionProduct clusteringImage feature extraction for downstream ML tasks
import torchimport torchvision.transforms as Tfrom PIL import Imageimport numpy as npimport matplotlib.pyplot as pltfrom torch.nn import functional as Fimport requestsfrom io import BytesIO# Load DINOv2 modeldinov2_vits14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')dinov2_vits14.eval()# Preprocess images for DINOv2transform = T.Compose([ T.Resize(256), T.CenterCrop(224), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])# Function to extract featuresdef extract_dinov2_features(image_path): image = Image.open(image_path).convert('RGB') if isinstance(image_path, str) else image_path img_tensor = transform(image).unsqueeze(0) with torch.no_grad(): features = dinov2_vits14(img_tensor) return features# Function to compute similarity between imagesdef compute_similarity(img1_path, img2_path): feat1 = extract_dinov2_features(img1_path) feat2 = extract_dinov2_features(img2_path) # Normalize features feat1 = F.normalize(feat1, dim=1) feat2 = F.normalize(feat2, dim=1) # Compute cosine similarity similarity = torch.mm(feat1, feat2.transpose(0, 1)).item() return similarity# Function to download image from URLdef download_image(url): response = requests.get(url, stream=True) return Image.open(BytesIO(response.content)).convert('RGB')# Function to visualize image pair with similarity scoredef visualize_similarity(img1_path, img2_path, title=None): # Load images if img1_path.startswith(('http://', 'https://')): img1 = download_image(img1_path) else: img1 = Image.open(img1_path).convert('RGB') if img2_path.startswith(('http://', 'https://')): img2 = download_image(img2_path) else: img2 = Image.open(img2_path).convert('RGB') # Compute similarity similarity = compute_similarity(img1, img2) # Create figure for visualization fig, axes = plt.subplots(1, 2, figsize=(12, 6)) # Display images axes[0].imshow(np.array(img1)) axes[0].set_title("Image 1") axes[0].axis("off") axes[1].imshow(np.array(img2)) axes[1].set_title("Image 2") axes[1].axis("off") # Add similarity score as figure title fig_title = f"Similarity Score: {similarity:.4f}" if title: fig_title = f"{title}n{fig_title}" fig.suptitle(fig_title, fontsize=16) plt.tight_layout() plt.show() return similarity# Example: Use direct URLs instead of downloading files first# Sample sneaker images from Unsplashurl1 = "https://images.unsplash.com/photo-1560769629-975ec94e6a86?w=500" # Red sneakerurl2 = "https://images.unsplash.com/photo-1600185365926-3a2ce3cdb9eb?w=500" # White sneakerurl3 = "https://images.unsplash.com/photo-1491553895911-0055eca6402d?w=500" # Another sneaker# Visualize pairs with similarity scoresprint("Comparing Product 1 and Product 2:")similarity_1_2 = visualize_similarity(url1, url2, "Red Sneaker vs White Sneaker")print("nComparing Product 1 and Product 3:")similarity_1_3 = visualize_similarity(url1, url3, "Red Sneaker vs Another Sneaker")print("nComparing Product 2 and Product 3:")similarity_2_3 = visualize_similarity(url2, url3, "White Sneaker vs Another Sneaker")# Print summary of all similaritiesprint("nSummary of Similarity Scores:")print(f"Similarity between product 1 and 2: {similarity_1_2:.4f}")print(f"Similarity between product 1 and 3: {similarity_1_3:.4f}")print(f"Similarity between product 2 and 3: {similarity_2_3:.4f}")
3. Segment Anything Model (SAM): Advanced Image Segmentation
SAM by Meta AI provides powerful zero-shot segmentation capabilities for various business applications.
Business Applications:
Automated image cataloging
Precise product measurement in retail
Medical image analysis
Agricultural crop monitoring
Content creation and editing
# Install required libraries for SAM!pip install git+https://github.com/facebookresearch/segment-anything.gitimport torchimport numpy as npimport matplotlib.pyplot as pltfrom segment_anything import sam_model_registry, SamPredictorimport cv2from PIL import Imageimport requests# Download SAM checkpoint!wget -q https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth# Load SAM modelsam = sam_model_registry["vit_h"](checkpoint="sam_vit_h_4b8939.pth")device = "cuda" if torch.cuda.is_available() else "cpu"sam.to(device)predictor = SamPredictor(sam)# Function to perform automatic segmentationdef segment_image(image_path): # Load image image = cv2.imread(image_path) image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Set image for SAM predictor.set_image(image_rgb) # Generate automatic masks masks, scores, logits = predictor.predict( point_coords=None, point_labels=None, multimask_output=True, box=None ) return image_rgb, masks, scores# Function to visualize segmentation resultsdef visualize_segmentation(image, masks, scores, limit=5): plt.figure(figsize=(15, 10)) # Display original image plt.subplot(1, limit+1, 1) plt.imshow(image) plt.title("Original Image") plt.axis('off') # Display top masks top_indices = np.argsort(scores)[-limit:][::-1] for i, idx in enumerate(top_indices): plt.subplot(1, limit+1, i+2) plt.imshow(image) plt.imshow(masks[idx], alpha=0.7, cmap='jet') plt.title(f"Mask {i+1}nScore: {scores[idx]:.3f}") plt.axis('off') plt.tight_layout() plt.show()# Example: Product segmentation for e-commerce!wget -q -O product_image.jpg "https://images.unsplash.com/photo-1525966222134-fcfa99b8ae77?w=800"image_rgb, masks, scores = segment_image("product_image.jpg")visualize_segmentation(image_rgb, masks, scores)# Business application: Calculate precise product measurementsdef calculate_object_dimensions(mask): # Find contours in the mask contours, _ = cv2.findContours((mask * 255).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if not contours: return None # Get the largest contour largest_contour = max(contours, key=cv2.contourArea) # Get bounding rectangle x, y, w, h = cv2.boundingRect(largest_contour) # Calculate aspect ratio aspect_ratio = w / h # Calculate area in pixels area_pixels = cv2.contourArea(largest_contour) return { 'width': w, 'height': h, 'aspect_ratio': aspect_ratio, 'area_pixels': area_pixels }# Apply to the highest scoring maskbest_mask_idx = np.argmax(scores)dimensions = calculate_object_dimensions(masks[best_mask_idx])print("Product Dimensions:")print(f"Width: {dimensions['width']} pixels")print(f"Height: {dimensions['height']} pixels")print(f"Aspect Ratio: {dimensions['aspect_ratio']:.2f}")print(f"Area: {dimensions['area_pixels']} square pixels")
4. BLIP-2: Vision-Language Model for Business Intelligence
BLIP-2 provides advanced vision-language capabilities for multimodal business applications.
Business Applications:
- Automated product description generationImage-based customer service automationVisual content analysis for marketingSocial media content understanding
from transformers import Blip2Processor, Blip2ForConditionalGenerationimport torchfrom PIL import Imageimport requestsimport matplotlib.pyplot as pltimport numpy as npfrom io import BytesIO# Load BLIP-2 modelprocessor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)if torch.cuda.is_available(): model = model.to("cuda")# Function to download image from URLdef download_image(url): response = requests.get(url, stream=True) return Image.open(BytesIO(response.content)).convert('RGB')# Function for image captioningdef generate_caption(image_path): # Load image from path or URL if isinstance(image_path, str): if image_path.startswith(('http://', 'https://')): image = download_image(image_path) else: image = Image.open(image_path).convert('RGB') else: image = image_path inputs = processor(images=image, return_tensors="pt") if torch.cuda.is_available(): inputs = {k: v.to("cuda") for k, v in inputs.items()} generated_ids = model.generate(**inputs, max_new_tokens=50) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() return generated_text# Function for visual question answeringdef visual_qa(image_path, question): # Load image from path or URL if isinstance(image_path, str): if image_path.startswith(('http://', 'https://')): image = download_image(image_path) else: image = Image.open(image_path).convert('RGB') else: image = image_path # FIX: Properly format the question for the model # BLIP-2 needs a specific prompt format for QA prompt = f"Question: {question} Answer:" inputs = processor(images=image, text=prompt, return_tensors="pt") if torch.cuda.is_available(): inputs = {k: v.to("cuda") for k, v in inputs.items()} generated_ids = model.generate( **inputs, max_new_tokens=30, do_sample=False # Use greedy decoding for more precise answers ) answer = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() # Remove the prompt part from the answer answer = answer.replace(prompt, "").strip() return answer# Function to visualize image with caption and QAdef visualize_product_analysis(image_path, questions=None): # Load image if isinstance(image_path, str): if image_path.startswith(('http://', 'https://')): image = download_image(image_path) else: image = Image.open(image_path).convert('RGB') else: image = image_path # Generate caption caption = generate_caption(image) # Default questions if none provided if questions is None: questions = [ "What color is this product?", "What material is this product made of?", "What is the target demographic for this product?", "What is a key feature of this product?" ] # Get answers answers = [] for question in questions: answer = visual_qa(image, question) answers.append((question, answer)) # Create visualization plt.figure(figsize=(12, 10)) # Display image plt.subplot(2, 1, 1) plt.imshow(np.array(image)) plt.title("Product Image", fontsize=14) plt.axis('off') # Display caption and Q&A plt.subplot(2, 1, 2) plt.axis('off') text_content = f"Generated Description: {caption}nn" text_content += "Product Analysis:n" for q, a in answers: text_content += f"Q: {q}nA: {a}nn" plt.text(0.01, 0.99, text_content, transform=plt.gca().transAxes, fontsize=12, verticalalignment='top', wrap=True) plt.tight_layout() plt.show() return caption, answers# Business application: Automated product listingdef create_product_listing(image_path): # Load image if isinstance(image_path, str): if image_path.startswith(('http://', 'https://')): image = download_image(image_path) else: image = Image.open(image_path).convert('RGB') else: image = image_path # Get basic caption caption = generate_caption(image) # Extract product attributes with more specific prompting color = visual_qa(image, "What colors are visible in this product?") material = visual_qa(image, "What material does this product appear to be made of?") use_case = visual_qa(image, "What would be the main use case for this product?") unique_features = visual_qa(image, "What are any unique or notable features of this product?") # Create structured listing listing = { "title": caption, "attributes": { "color": color, "material": material, "primary_use": use_case, "unique_features": unique_features } } # Visualize the listing plt.figure(figsize=(14, 10)) # Display image plt.subplot(1, 2, 1) plt.imshow(np.array(image)) plt.title("Product Image", fontsize=14) plt.axis('off') # Display listing details plt.subplot(1, 2, 2) plt.axis('off') listing_text = f"PRODUCT LISTINGnn" listing_text += f"Title: {listing['title']}nn" listing_text += "Product Attributes:n" for attr, value in listing['attributes'].items(): listing_text += f"{attr.replace('_', ' ').title()}: {value}n" plt.text(0.01, 0.99, listing_text, transform=plt.gca().transAxes, fontsize=12, verticalalignment='top') plt.tight_layout() plt.show() return listing# Function for marketing content analysisdef analyze_marketing_content(image_path): # Load image if isinstance(image_path, str): if image_path.startswith(('http://', 'https://')): image = download_image(image_path) else: image = Image.open(image_path).convert('RGB') else: image = image_path # Marketing-specific questions marketing_questions = [ "What emotions does this image evoke?", "What brand values are communicated in this image?", "What target audience would this image appeal to?", "What call to action would pair well with this image?", "What marketing channel would this image be most effective on?" ] # Get answers marketing_insights = {} for question in marketing_questions: answer = visual_qa(image, question) key = question.split("?")[0].strip().lower().replace(" ", "_") marketing_insights[key] = answer # Visualize the analysis plt.figure(figsize=(14, 10)) # Display image plt.subplot(1, 2, 1) plt.imshow(np.array(image)) plt.title("Marketing Visual", fontsize=14) plt.axis('off') # Display marketing insights plt.subplot(1, 2, 2) plt.axis('off') insights_text = "MARKETING CONTENT ANALYSISnn" for question, key in zip(marketing_questions, marketing_insights.keys()): insights_text += f"{question}n{marketing_insights[key]}nn" plt.text(0.01, 0.99, insights_text, transform=plt.gca().transAxes, fontsize=12, verticalalignment='top') plt.tight_layout() plt.show() return marketing_insights# Function for social media understandingdef analyze_social_media_content(image_path): # Load image if isinstance(image_path, str): if image_path.startswith(('http://', 'https://')): image = download_image(image_path) else: image = Image.open(image_path).convert('RGB') else: image = image_path # Generate caption caption = generate_caption(image) # Social media specific analysis engagement_potential = visual_qa(image, "How likely is this image to engage viewers on social media?") suggested_hashtags = visual_qa(image, "What hashtags would be appropriate for this image on social media?") platform_fit = visual_qa(image, "Which social media platform would this image perform best on?") content_type = visual_qa(image, "What type of social media post would this image be suitable for?") # Create analysis dict social_analysis = { "caption": caption, "engagement_potential": engagement_potential, "suggested_hashtags": suggested_hashtags, "platform_fit": platform_fit, "content_type": content_type } # Visualize the analysis plt.figure(figsize=(14, 10)) # Display image plt.subplot(1, 2, 1) plt.imshow(np.array(image)) plt.title("Social Media Content", fontsize=14) plt.axis('off') # Display social media insights plt.subplot(1, 2, 2) plt.axis('off') insights_text = "SOCIAL MEDIA CONTENT ANALYSISnn" insights_text += f"Caption: {social_analysis['caption']}nn" insights_text += f"Engagement Potential: {social_analysis['engagement_potential']}nn" insights_text += f"Suggested Hashtags: {social_analysis['suggested_hashtags']}nn" insights_text += f"Best Platform: {social_analysis['platform_fit']}nn" insights_text += f"Content Type: {social_analysis['content_type']}n" plt.text(0.01, 0.99, insights_text, transform=plt.gca().transAxes, fontsize=12, verticalalignment='top') plt.tight_layout() plt.show() return social_analysis# Example usageif __name__ == "__main__": # Example: E-commerce product analysis product_url = "https://images.unsplash.com/photo-1598033129183-c4f50c736f10?w=800" print("1. Basic Product Analysis") caption, qa_results = visualize_product_analysis(product_url) print("n2. Creating Automated Product Listing") product_listing = create_product_listing(product_url) print("n3. Marketing Content Analysis") marketing_url = "https://images.unsplash.com/photo-1581252584837-9f0b1d3bf82c?ixlib=rb-4.0.3&q=80" marketing_insights = analyze_marketing_content(marketing_url) print("n4. Social Media Content Analysis") social_url = "https://images.unsplash.com/photo-1534442072653-dbbf80c5e1ae?ixlib=rb-4.0.3&q=80" social_analysis = analyze_social_media_content(social_url)
Conclusion
This tutorial provides hands-on implementation guidance for deploying four key computer vision foundation models into business applications: CLIP (zero-shot classification), DINO v2 (self-supervised learning), SAM (image segmentation), and BLIP-2 (vision-language tasks).Future experimentation could explore model ensemble techniques, fine-tuning on domain-specific datasets, edge deployment optimization, and integration with business intelligence platforms to maximize ROI on vision AI investments.
Check out the Notebook here. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 90k+ ML SubReddit. For Promotion and Partnerships, please talk us.
The post Vision Foundation Models: Implementation and Business Applications appeared first on MarkTechPost.