少点错误 04月26日 05:47
Who's Working On It? AI-Controlled Experiments
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章探讨了人工智能在实验科学中的应用,特别是数据分析在加速学习和跨学科思想生成方面的作用。虽然AI模型在数据分析方面表现出色,但文章强调了实验在AI发展中的重要性。通过实验,AI可以学习因果关系,而不仅仅是相关性。文章最后提到了目前一些公司正在致力于构建能够自主进行实验的AI系统,从而推动科学研究的进步。

🔬AI在实验科学中主要应用于数据分析,例如基因组序列、图像、化学测量等。通过分析现有数据集,AI可以进行预测、生成和自然语言搜索等任务,从而加速学习和跨学科思想的生成。

💡AI模型依赖于人类科学家收集的数据,虽然它们可以发现人类未发现的联系,但缺乏与物理实验的连接。作者认为,只有当AI能够自主进行实验、观察结果并迭代时,才能真正被视为“AI科学家”。

🧪实验对于AI至关重要,因为它能帮助AI学习因果关系,而不仅仅是相关性。实验是人类和动物学习的基础,也是AI构建物理推理的关键。理想的AI应该能够通过传感器日志学习实际的物理实验过程,包括失败和调整。

🚀目前,已经有公司开始构建能够自主进行实验的AI系统,这预示着AI在科学研究领域的巨大潜力。

Published on April 25, 2025 9:40 PM GMT

Dr. Lee Cronin’s “Chemputer” robot

A lot of applications of AI in the experimental sciences boil down to data analysis.

You take existing datasets — be they genomic sequences, images, chemical measurements, molecular structures, or even published papers — and use a model to analyze them.

You can do a lot of useful things with this, such as:

But one limit on all these kinds of models is that they’re piggybacking on data collected by human scientists. They can find connections that no human has discovered, and they can attempt to generalize out of their dataset, but until they are connected in a loop that includes physical experiments, I don’t think it’s fair to consider them “AI scientists.”

However, once you do close the loop, allowing the AI to suggest experiments, observe the results, and iterate, then I think one of the most important in-principle differences between AIs and humans falls away.

Experimentation allows us to learn causality, not just correlation. Experimentation is how a baby learns to walk; it’s how animals build the physical reasoning that we often see examples of LLMs failing at. Experimentation — ideally with enough sensor logs to build tacit knowledge of how real-world physical projects fail and need to be adjusted/repaired, not just an idealized matrix of “experimental results” produced once human experimenters have ironed out all the difficulty — is what would give me confidence that an AI could autonomously invent new technologies or discover new phenomena in the physical world.

I am, of course, not alone in noticing this! After a few years when it seemed like nobody was doing this, there are now companies based on this very model.

Below the paywall, a survey of who’s working on this kind of problem.

Read more



Discuss

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

人工智能 实验科学 AI科学家 数据分析 机器学习
相关文章