cs.AI updates on arXiv.org 04月24日
Approximating Optimal Labelings for Temporal Connectivity
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了时态图中的最小老化标签(MAL)问题,旨在优化时态图中边的可用时间,以连接所有顶点对,同时最小化标签总数。MAL问题在物流、调度和社会网络信息传播等领域有重要应用,通过精心选择时间标签可以显著降低成本。研究表明,MAL问题在无向图上是NP完全的,在有向图上是APX-hard的。研究者进一步扩展了对MAL复杂度和可逼近性的理解,给出了新的不可逼近性结果和近似算法,并建立了与静态图上的直径约束生成子图(DCSS)问题的联系。

⏱️最小老化标签(MAL)问题关注时态图中边的可用时间安排。目标是确保所有顶点对在给定最大时间$a$内连通,并最小化标签总数。

💡MAL问题在物流、调度和社会网络中具有实际应用价值,例如优化运输路线或信息传播效率。

⚠️研究表明,MAL问题在无向图上是NP完全的,在有向图上是APX-hard的,这意味着很难找到最优解。

🔍研究者证明了MAL问题在特定条件下无法被近似的程度,并提出了近似算法。这些算法的近似性能取决于最大时间$a$和输入图的直径之间的关系。

🔗研究还建立了MAL问题与静态图上直径约束生成子图(DCSS)问题的联系,表明MAL问题的研究结果也适用于DCSS问题。

arXiv:2504.16837v1 Announce Type: cross Abstract: In a temporal graph the edge set dynamically changes over time according to a set of time-labels associated with each edge that indicates at which time-steps the edge is available. Two vertices are connected if there is a path connecting them in which the edges are traversed in increasing order of their labels. We study the problem of scheduling the availability time of the edges of a temporal graph in such a way that all pairs of vertices are connected within a given maximum allowed time $a$ and the overall number of labels is minimized. The problem, known as \emph{Minimum Aged Labeling} (MAL), has several applications in logistics, distribution scheduling, and information spreading in social networks, where carefully choosing the time-labels can significantly reduce infrastructure costs, fuel consumption, or greenhouse gases. The problem MAL has previously been proved to be NP-complete on undirected graphs and \APX-hard on directed graphs. In this paper, we extend our knowledge on the complexity and approximability of MAL in several directions. We first show that the problem cannot be approximated within a factor better than $O(\log n)$ when $a\geq 2$, unless $\text{P} = \text{NP}$, and a factor better than $2^{\log ^{1-\epsilon} n}$ when $a\geq 3$, unless $\text{NP}\subseteq \text{DTIME}(2^{\text{polylog}(n)})$, where $n$ is the number of vertices in the graph. Then we give a set of approximation algorithms that, under some conditions, almost match these lower bounds. In particular, we show that the approximation depends on a relation between $a$ and the diameter of the input graph. We further establish a connection with a foundational optimization problem on static graphs called \emph{Diameter Constrained Spanning Subgraph} (DCSS) and show that our hardness results also apply to DCSS.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时态图 最小老化标签 算法优化 图论
相关文章