AWS Machine Learning Blog 2024年07月03日
Build generative AI applications on Amazon Bedrock — the secure, compliant, and responsible foundation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Amazon Bedrock 是一款完全托管的服务,通过单个 API 提供来自领先 AI 公司的大型语言模型 (LLM) 和其他基础模型 (FM) 的访问权限。它提供了一套广泛的工具和功能,帮助构建生成式 AI 应用。本文将探讨 Amazon Bedrock 如何帮助解决安全和隐私问题,实现安全模型定制,加速可审计性和事件响应,并通过透明度和负责任的 AI 培养信任。

🤔 **安全和隐私**:Amazon Bedrock 采用多层方法来解决数据安全和隐私问题,确保数据在构建生成式 AI 应用的整个生命周期中保持安全和私密。数据隔离和加密:任何由 Amazon Bedrock 处理的客户内容(如客户输入和模型输出)都不会与任何第三方模型提供商共享,也不会用于训练底层 FM。此外,数据在传输过程中使用 TLS 1.2+ 进行加密,在静止状态下通过 AWS Key Management Service (AWS KMS) 进行加密。 安全连接选项:客户可以灵活地连接到 Amazon Bedrock 的 API 端点。可以使用公共互联网网关、AWS PrivateLink(VPC 端点)进行私有连接,甚至可以从您的本地网络通过 AWS Direct Connect 回传流量。 模型访问控制:Amazon Bedrock 在多个级别提供强大的访问控制。模型访问策略允许您明确允许或拒绝为您的帐户启用特定 FM。AWS Identity and Access Management (IAM) 策略允许您进一步限制您的应用程序和角色可以调用哪些已配置模型,以及可以调用这些模型上的哪些 API。

🔐 **安全定制**:Amazon Bedrock 提供了一种安全的方法来定制模型,以便在整个过程中保护敏感数据。 模型定制数据安全:在微调模型时,Amazon Bedrock 通过私有 VPC 连接使用来自 Amazon Simple Storage Service (Amazon S3) 存储桶的加密训练数据。Amazon Bedrock 不将模型定制数据用于任何其他目的。您的训练数据不会用于训练基础 Amazon Titan 模型或分发给第三方。其他使用数据(例如使用时间戳、已记录的帐户 ID 和服务记录的其他信息)也不会用于训练模型。实际上,您为微调或持续预训练提供的任何训练或验证数据都不会存储在 Amazon Bedrock 中。完成模型定制工作后,它将保持隔离状态,并使用您的 KMS 密钥进行加密。 安全部署微调后的模型:预训练或微调后的模型部署在专门用于您的帐户的隔离环境中。您可以进一步使用自己的 KMS 密钥加密这些模型,防止在没有适当 IAM 权限的情况下访问。 集中式多帐户模型访问:AWS Organizations 使您能够在多个帐户之间集中管理您的环境。您可以在组织中创建和组织帐户,合并成本,并为自定义环境应用策略。对于拥有多个 AWS 帐户或分布式应用程序架构的组织,Amazon Bedrock 支持集中式治理和对 FM 的访问 - 您可以保护您的环境,创建和共享资源,以及集中式管理权限。使用标准 AWS 跨帐户 IAM 角色,管理员可以授予对不同帐户中模型的安全访问权限,从而实现受控和可审计的使用,同时保持集中式控制点。

💡 **可审计性和可见性**:除了围绕数据隔离、加密和访问的安全控制之外,Amazon Bedrock 还提供功能来启用可审计性,并在需要时加速事件响应。 合规性认证:对于具有严格监管要求的客户,您可以在符合通用数据保护条例 (GDPR)、健康保险流通与责任法案 (HIPAA) 等的情况下使用 Amazon Bedrock。此外,AWS 已成功扩展了 Amazon Bedrock 在欧洲数据保护行为准则 (CISPE CODE) 公共注册中的云基础设施服务提供商注册状态。此声明提供了独立验证,并额外保证 Amazon Bedrock 可用于符合 GDPR 的规定。对于联邦机构和公共部门组织,Amazon Bedrock 最近宣布了 FedRAMP Moderate,批准在我们的美国东部和西部 AWS 区域使用。Amazon Bedrock 还在审查中,以获得 AWS GovCloud (US) 中 FedRAMP 高级授权。 监控和记录:与 Amazon CloudWatch 和 AWS CloudTrail 的原生集成提供对 API 活动、模型使用指标、令牌使用情况和其他性能数据的全面监控、记录和可见性。这些功能允许持续监控,以根据需要进行改进、优化和审计 - 我们知道这对于在过去 18 年中与云中客户合作至关重要。Amazon Bedrock 允许您启用所有模型输入和输出的详细记录,包括 IAM 调用角色,以及与您的帐户中执行的所有调用相关的元数据。这些日志有助于监控模型响应以遵守您组织的 AI 政策和声誉指南。当您启用日志模型调用日志记录时,您可以使用 AWS KMS 来加密您的日志数据,并使用 IAM 策略来保护谁可以访问您的日志数据。所有这些数据都不会存储在 Amazon Bedrock 中,并且仅在客户的帐户中可用。

Generative AI has revolutionized industries by creating content, from text and images to audio and code. Although it can unlock numerous possibilities, integrating generative AI into applications demands meticulous planning. Amazon Bedrock is a fully managed service that provides access to large language models (LLMs) and other foundation models (FMs) from leading AI companies through a single API. It provides a broad set of tools and capabilities to help build generative AI applications.

Starting today, I’ll be writing a blog series to highlight some of the key factors driving customers to choose Amazon Bedrock. One of the most important reason is that Bedrock enables customers to build a secure, compliant, and responsible foundation for generative AI applications. In this post, I explore how Amazon Bedrock helps address security and privacy concerns, enables secure model customization, accelerates auditability and incident response, and fosters trust through transparency and responsible AI. Plus, I’ll showcase real-world examples of companies building secure generative AI applications on Amazon Bedrock—demonstrating its practical applications across different industries.

Listening to what our customers are saying

During the past year, my colleague Jeff Barr, VP & Chief Evangelist at AWS, and I have had the opportunity to speak with numerous customers about generative AI. They mention compelling reasons for choosing Amazon Bedrock to build and scale their transformative generative AI applications. Jeff’s video highlights some of the key factors driving customers to choose Amazon Bedrock today.

As you build and operationalize generative AI, it’s important not to lose sight of critically important elements—security, compliance, and responsible AI—particularly for use cases involving sensitive data. The OWASP Top 10 For LLMs outlines the most common vulnerabilities, but addressing these may require additional efforts including stringent access controls, data encryption, preventing prompt injection attacks, and compliance with policies. You want to make sure your AI applications work reliably, as well as securely.

Making data security and privacy a priority

Like many organizations starting their generative AI journey, the first concern is to make sure the organization’s data remains secure and private when used for model tuning or Retrieval Augmented Generation (RAG). Amazon Bedrock provides a multi-layered approach to address this issue, helping you ensure that your data remains secure and private throughout the entire lifecycle of building generative AI applications:

Druva provides a data security software-as-a-service (SaaS) solution to enable cyber, data, and operational resilience for all businesses. They used Amazon Bedrock to rapidly experiment, evaluate, and implement different LLM components tailored to solve specific customer needs around data protection without worrying about the underlying infrastructure management.

“We built our new service Dru — an AI co-pilot that both IT and business teams can use to access critical information about their protection environments and perform actions in natural language — in Amazon Bedrock because it provides fully managed and secure access to an array of foundation models,”

– David Gildea, Vice President of Product, Generative AI at Druva.

Ensuring secure customization

A critical aspect of generative AI adoption for many organizations is the ability to securely customize the application to align with your specific use cases and requirements, including RAG or fine-tuning FMs. Amazon Bedrock offers a secure approach to model customization, so sensitive data remains protected throughout the entire process:

With seamless access to LLMs in Amazon Bedrock—and with data encrypted in-transit and at-rest—BMW Group securely delivers high-quality connected mobility solutions to motorists around the world.

“Using Amazon Bedrock, we’ve been able to scale our cloud governance, reduce costs and time to market, and provide a better service for our customers. All of this is helping us deliver the secure, first-class digital experiences that people across the world expect from BMW.”

– Dr. Jens Kohl, Head of Offboard Architecture, BMW Group.

Enabling auditability and visibility

In addition to the security controls around data isolation, encryption, and access, Amazon Bedrock provides capabilities to enable auditability and accelerate incident response when needed:

Implementing responsible AI practices

AWS is committed to developing generative AI responsibly, taking a people-centric approach that prioritizes education, science, and our customers, to integrate responsible AI across the full AI lifecycle. With AWS’s comprehensive approach to responsible AI development and governance, Amazon Bedrock empowers you to build trustworthy generative AI systems in line with your responsible AI principles.

We give our customers the tools, guidance, and resources they need to get started with purpose-built services and features, including several in Amazon Bedrock:

Aha! is a software company that helps more than 1 million people bring their product strategy to life.

“Our customers depend on us every day to set goals, collect customer feedback, and create visual roadmaps. That is why we use Amazon Bedrock to power many of our generative AI capabilities. Amazon Bedrock provides responsible AI features, which enable us to have full control over our information through its data protection and privacy policies, and block harmful content through Guardrails for Bedrock.”

– Dr. Chris Waters, co-founder and Chief Technology Officer at Aha!

Building trust through transparency

By addressing security, compliance, and responsible AI holistically, Amazon Bedrock helps customers to unlock generative AI’s transformative potential. As generative AI capabilities continue to evolve so rapidly, building trust through transparency is crucial. Amazon Bedrock works continuously to help develop safe and secure applications and practices, helping build generative AI applications responsibly.

The bottom line? Amazon Bedrock makes it effortless for you to unlock sustained growth with generative AI and experience the power of LLMs. Get started today – Build AI applications or customize models securely using your data to start your generative AI journey with confidence.

Resources

For more information about generative AI and Amazon Bedrock, explore the following resources:


About the author

Vasi Philomin is VP of Generative AI at AWS. He leads generative AI efforts, including Amazon Bedrock and Amazon Titan.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Amazon Bedrock 生成式 AI 安全 合规性 负责任的 AI
相关文章