AI News 04月23日 15:02
Google introduces AI reasoning control in Gemini 2.5 Flash
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Google推出了Gemini 2.5 Flash模型的AI推理控制机制,允许开发者限制系统在问题解决上消耗的计算资源。此举旨在应对先进AI模型过度分析简单查询,导致不必要的计算资源消耗和运营成本上升的问题。该机制能够精确校准处理资源,从而改变组织管理AI部署的财务和环境影响的方式。同时,这标志着行业开始关注AI推理的效率问题,并探索如何在性能和成本之间取得平衡。

💡Google在Gemini 2.5 Flash模型中引入了AI推理控制机制,允许开发者控制模型在问题解决中使用的计算资源,被称为“思考预算”。

⚙️该机制旨在解决先进AI模型在处理简单查询时过度分析的问题,从而降低不必要的计算资源消耗和运营成本。

💰当激活完全推理时,生成输出的成本大约是标准处理的六倍,因此精细的控制对于控制成本至关重要。

⚖️Google的推理控制机制提供了一个灵活的范围,从零(最小推理)到24,576个token的“思考预算”,允许根据特定用例进行定制部署。

🌱此举可能预示着人工智能发展方向的转变,从侧重模型规模转向优化推理过程,从而提高效率,并减少对环境的影响。

Google has introduced an AI reasoning control mechanism for its Gemini 2.5 Flash model that allows developers to limit how much processing power the system expends on problem-solving.

Released on April 17, this “thinking budget” feature responds to a growing industry challenge: advanced AI models frequently overanalyse straightforward queries, consuming unnecessary computational resources and driving up operational and environmental costs.

While not revolutionary, the development represents a practical step toward addressing efficiency concerns that have emerged as reasoning capabilities become standard in commercial AI software.

The new mechanism enables precise calibration of processing resources before generating responses, potentially changing how organisations manage financial and environmental impacts of AI deployment.

“The model overthinks,” acknowledges Tulsee Doshi, Director of Product Management at Gemini. “For simple prompts, the model does think more than it needs to.”

The admission reveals the challenge facing advanced reasoning models – the equivalent of using industrial machinery to crack a walnut.

The shift toward reasoning capabilities has created unintended consequences. Where traditional large language models primarily matched patterns from training data, newer iterations attempt to work through problems logically, step by step. While this approach yields better results for complex tasks, it introduces significant inefficiency when handling simpler queries.

Balancing cost and performance

The financial implications of unchecked AI reasoning are substantial. According to Google’s technical documentation, when full reasoning is activated, generating outputs becomes approximately six times more expensive than standard processing. The cost multiplier creates a powerful incentive for fine-tuned control.

Nathan Habib, an engineer at Hugging Face who studies reasoning models, describes the problem as endemic across the industry. “In the rush to show off smarter AI, companies are reaching for reasoning models like hammers even where there’s no nail in sight,” he explained to MIT Technology Review.

The waste isn’t merely theoretical. Habib demonstrated how a leading reasoning model, when attempting to solve an organic chemistry problem, became trapped in a recursive loop, repeating “Wait, but…” hundreds of times – essentially experiencing a computational breakdown and consuming processing resources.

Kate Olszewska, who evaluates Gemini models at DeepMind, confirmed Google’s systems sometimes experience similar issues, getting stuck in loops that drain computing power without improving response quality.

Granular control mechanism

Google’s AI reasoning control provides developers with a degree of precision. The system offers a flexible spectrum ranging from zero (minimal reasoning) to 24,576 tokens of “thinking budget” – the computational units representing the model’s internal processing. The granular approach allows for customised deployment based on specific use cases.

Jack Rae, principal research scientist at DeepMind, says that defining optimal reasoning levels remains challenging: “It’s really hard to draw a boundary on, like, what’s the perfect task right now for thinking.”

Shifting development philosophy

The introduction of AI reasoning control potentially signals a change in how artificial intelligence evolves. Since 2019, companies have pursued improvements by building larger models with more parameters and training data. Google’s approach suggests an alternative path focusing on efficiency rather than scale.

“Scaling laws are being replaced,” says Habib, indicating that future advances may emerge from optimising reasoning processes rather than continuously expanding model size.

The environmental implications are equally significant. As reasoning models proliferate, their energy consumption grows proportionally. Research indicates that inferencing – generating AI responses – now contributes more to the technology’s carbon footprint than the initial training process. Google’s reasoning control mechanism offers a potential mitigating factor for this concerning trend.

Competitive dynamics

Google isn’t operating in isolation. The “open weight” DeepSeek R1 model, which emerged earlier this year, demonstrated powerful reasoning capabilities at potentially lower costs, triggering market volatility that reportedly caused nearly a trillion-dollar stock market fluctuation.

Unlike Google’s proprietary approach, DeepSeek makes its internal settings publicly available for developers to implement locally.

Despite the competition, Google DeepMind’s chief technical officer Koray Kavukcuoglu maintains that proprietary models will maintain advantages in specialised domains requiring exceptional precision: “Coding, math, and finance are cases where there’s high expectation from the model to be very accurate, to be very precise, and to be able to understand really complex situations.”

Industry maturation signs

The development of AI reasoning control reflects an industry now confronting practical limitations beyond technical benchmarks. While companies continue to push reasoning capabilities forward, Google’s approach acknowledges a important reality: efficiency matters as much as raw performance in commercial applications.

The feature also highlights tensions between technological advancement and sustainability concerns. Leaderboards tracking reasoning model performance show that single tasks can cost upwards of $200 to complete – raising questions about scaling such capabilities in production environments.

By allowing developers to dial reasoning up or down based on actual need, Google addresses both financial and environmental aspects of AI deployment.

“Reasoning is the key capability that builds up intelligence,” states Kavukcuoglu. “The moment the model starts thinking, the agency of the model has started.” The statement reveals both the promise and the challenge of reasoning models – their autonomy creates both opportunities and resource management challenges.

For organisations deploying AI solutions, the ability to fine-tune reasoning budgets could democratise access to advanced capabilities while maintaining operational discipline.

Google claims Gemini 2.5 Flash delivers “comparable metrics to other leading models for a fraction of the cost and size” – a value proposition strengthened by the ability to optimise reasoning resources for specific applications.

Practical implications

The AI reasoning control feature has immediate practical applications. Developers building commercial applications can now make informed trade-offs between processing depth and operational costs.

For simple applications like basic customer queries, minimal reasoning settings preserve resources while still using the model’s capabilities. For complex analysis requiring deep understanding, the full reasoning capacity remains available.

Google’s reasoning ‘dial’ provides a mechanism for establishing cost certainty while maintaining performance standards.

See also: Gemini 2.5: Google cooks up its ‘most intelligent’ AI model to date

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.

Explore other upcoming enterprise technology events and webinars powered by TechForge here.

The post Google introduces AI reasoning control in Gemini 2.5 Flash appeared first on AI News.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Google Gemini 2.5 Flash AI推理控制 计算效率
相关文章