MarkTechPost@AI 04月21日 14:46
OpenAI Releases a Practical Guide to Identifying and Scaling AI Use Cases in Enterprise Workflows
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

OpenAI 发布了一份详尽的指南,旨在帮助企业识别和扩展 AI 应用案例,从而实现可衡量的业务影响。该指南基于 300 多个案例研究和超过 200 万企业用户的经验,提供了一种系统化的方法,涵盖了 AI 在组织内的识别、评估和部署过程。这份指南强调了结构化的 AI 集成流程,从识别高杠杆机会到优先考虑规模化项目,为企业提供了实用的 AI 落地蓝图。

💡 **机会识别:** 指南强调在工作流程中识别重复性、低价值任务,技能瓶颈和模糊问题,这些是 AI 最能发挥作用的领域。例如,自动化总结、监控 KPI 和创建报告等任务,使团队能够专注于更高优先级的工作。

🔨 **六大基础应用:** OpenAI 概述了六个基础的 AI 应用“原语”,这些是常见且可扩展的 AI 应用,包括内容创作、研究、编码、数据分析、创意与战略和自动化。每个原语都提供了特定领域的例子,展示其跨职能实用性,例如财务团队可以自动化执行报告,而产品经理可以使用 AI 来原型设计用户界面或准备文档。

📊 **影响/努力框架:** 为了从创意走向实施,OpenAI 推荐使用影响/努力矩阵。该工具将用例分为四类:快速胜利、自助服务、战略项目和延期项目。例如,Tinder 允许产品团队使用自然语言与他们的 CLI 交互,而摩根士丹利部署 AI 来为顾问总结研究报告,展示了在同一优先级结构内应用的多元化。

🔄 **工作流程整合:** 指南也讨论了从单个任务增强到完整工作流程自动化的转变。OpenAI 建议映射多步骤流程,例如营销活动生命周期,从研究和数据分析到内容生成和分发。这种系统级的视图为组织在不久的将来做好准备,以应对更多自主的代理工作流程。

As the deployment of artificial intelligence accelerates across industries, a recurring challenge for enterprises is determining how to operationalize AI in a way that generates measurable impact. To support this need, OpenAI has published a comprehensive, process-oriented guide titled Identifying and Scaling AI Use Cases.” Drawing from over 300 implementation case studies and insights from more than two million enterprise users, the guide offers a systematic approach to identifying, evaluating, and deploying AI across organizational functions.

A Structured Process for AI Integration

The guide introduces a three-phase methodology:

    Identifying High-Leverage Opportunities – Recognize where AI can directly augment existing business processes.Teaching Six Foundational Use Case Primitives – Provide teams with a framework for experimentation and adoption.Prioritizing Initiatives for Scale – Use structured evaluation methods to focus efforts on use cases with favorable return-to-effort ratios.

This framework is designed to support organizations at various stages of maturity, from early experimentation to scaled deployment.

Phase 1: Identifying Opportunities for AI Impact

The first phase emphasizes examining routine inefficiencies and cognitive bottlenecks across workflows. The guide highlights three categories where AI tends to be most effective:

These categories provide a lens for assessing workflows and initiating structured ideation, often in the form of use case workshops or cross-functional task forces.

Phase 2: Teaching Core AI Use Case Primitives

Based on analysis of over 600 real-world use cases, OpenAI outlines six foundational “primitives” that encapsulate common and scalable applications of AI:

Each primitive includes domain-specific examples that demonstrate its cross-functional utility. For instance, finance teams may automate executive reporting, while product managers use AI to prototype user interfaces or prepare documentation.

Phase 3: Prioritization Through an Impact-Effort Framework

To transition from ideation to implementation, OpenAI recommends an Impact/Effort matrix. This tool segments use cases into four categories:

Several companies cited in the guide have applied this framework. Tinder enabled product teams to interface with their CLI using natural language, while Morgan Stanley deployed AI to summarize research reports for advisors. These examples demonstrate the diversity of applications that fit within the same prioritization structure.

From Task Automation to Workflow-Level Integration

The guide also addresses the shift from individual task augmentation to full workflow automation. OpenAI suggests mapping multi-step processes—for example, a marketing campaign lifecycle—from research and data analysis through to content generation and distribution. This systems-level view prepares organizations for more autonomous agentic workflows in the near future.

Final Considerations

OpenAI’s guide offers a structured and technically grounded approach to AI adoption. Rather than focusing on abstract potential, it emphasizes practical integration aligned with organizational needs and capacities. By promoting internal capability-building and prioritization discipline, it supports the development of scalable, sustainable AI infrastructure within the enterprise.

For teams seeking to advance beyond isolated experiments, the guide functions as a blueprint for systematic rollout—anchored in real use cases and measurable impact.


Check out the Guide. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 90k+ ML SubReddit.

[Register Now] miniCON Virtual Conference on AGENTIC AI: FREE REGISTRATION + Certificate of Attendance + 4 Hour Short Event (May 21, 9 am- 1 pm PST) + Hands on Workshop

The post OpenAI Releases a Practical Guide to Identifying and Scaling AI Use Cases in Enterprise Workflows appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

OpenAI AI 应用 企业 AI AI 部署 工作流程自动化
相关文章