MarkTechPost@AI 04月17日 01:40
A Coding Implementation for Building Python-based Data and Business intelligence BI Web Applications with Taipy: Dynamic Interactive Time Series Analysis, Real-Time Simulation, Seasonal Decomposition, and Advanced Visualization
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍如何使用Taipy框架构建一个高级的、交互式仪表盘,用于模拟复杂的时间序列数据并进行实时季节性分解。通过Taipy的反应式状态管理,用户可以无缝调整参数,例如修改趋势系数、季节性振幅和噪声水平,并即时更新可视化输出。文章演示了如何在Google Colab环境中,逐步探索模拟和后续分析,展示了Taipy如何简化丰富、交互式视觉分析的开发。文章还提供了Colab Notebook,方便读者实践。

📈Taipy框架是构建交互式Python数据和商业智能(BI)Web应用程序的关键,通过安装Taipy和statsmodels库,确保了运行高级仪表盘所需的所有必要库。

⚙️仪表盘使用一个名为state的字典作为反应式状态容器,用于存储模拟参数、数据和视觉输出。这使得应用程序能够响应参数更改,并实时更新可视化和分析。

📊update_simulation函数通过结合线性趋势、正弦季节性模式和随机噪声来生成合成时间序列,并计算摘要统计信息。它还生成两个matplotlib图形,分别用于模拟时间序列及其季节分解,并处理分解过程中的潜在错误。

🖱️仪表盘界面包含交互式滑块,用于调整趋势系数、季节性振幅、噪声水平和时间范围。这些参数的调整会实时更新模拟数据和季节性分解图,从而实现动态交互分析。

In this comprehensive tutorial, we explore building an advanced, interactive dashboard with Taipy. Taipy is an innovative framework designed to create dynamic data-driven applications effortlessly. This tutorial will teach you how to harness its power to simulate complex time series data and perform real-time seasonal decomposition. By leveraging Taipy’s reactive state management, we construct a dashboard that allows seamless parameter adjustments, such as modifying trend coefficients, seasonal amplitudes, and noise levels, and updates visual outputs instantaneously. Integrated within a Google Colab environment, this tutorial provides a step-by-step approach to exploring the simulation and subsequent analysis using statsmodels, demonstrating how Taipy can streamline the development of rich, interactive visual analytics. 

!pip install taipy statsmodels

We install the Taipy framework, which is essential for building interactive Python data and Business intelligence BI web applications. We also install stats models for sophisticated statistical analyses and time series decomposition. This setup ensures that all necessary libraries are available to run the advanced dashboard in Google Colab.

from taipy.gui import Guiimport numpy as npimport matplotlib.pyplot as pltfrom statsmodels.tsa.seasonal import seasonal_decompose

We import the essential libraries to build an interactive dashboard with Taipy. It brings in Taipy’s Gui class for creating the web interface, NumPy for efficient numerical computations, matplotlib.pyplot for plotting graphs, and seasonal_decompose from statsmodels to perform seasonal decomposition on time series data.

state = {    "trend_coeff": 0.05,                "seasonal_amplitude": 5.0,            "noise_level": 1.0,                "time_horizon": 100,                "sim_data": None,                    "times": None,                      "plot_timeseries": None,            "plot_decomposition": None,          "summary": ""                  }

We initialize a dictionary named state that serves as the reactive state container for the dashboard. Each key in the dictionary holds either a simulation parameter (like the trend coefficient, seasonal amplitude, noise level, and time horizon) or a placeholder for data and visual outputs (such as simulated data, time indices, the time series plot, the decomposition plot, and a summary string). This structured state allows the application to react to parameter changes and update the visualizations and analysis in real time.

def update_simulation(state):    t = np.arange(state["time_horizon"])       trend = state["trend_coeff"] * t       season = state["seasonal_amplitude"] * np.sin(2 * np.pi * t / 7)       noise = np.random.normal(0, state["noise_level"], size=state["time_horizon"])       sim_data = trend + season + noise    state["times"] = t    state["sim_data"] = sim_data       mean_val = np.mean(sim_data)    std_val = np.std(sim_data)    state["summary"] = f"Mean: {mean_val:.2f} | Std Dev: {std_val:.2f}"       fig, ax = plt.subplots(figsize=(8, 4))    ax.plot(t, sim_data, label="Simulated Data", color="blue")    ax.set_title("Simulated Time Series")    ax.set_xlabel("Time (days)")    ax.set_ylabel("Value")    ax.legend()    state["plot_timeseries"] = fig         try:        decomp = seasonal_decompose(sim_data, period=7)               fig_decomp, axs = plt.subplots(4, 1, figsize=(8, 8))        axs[0].plot(t, decomp.observed, label="Observed", color="blue")        axs[0].set_title("Observed Component")               axs[1].plot(t, decomp.trend, label="Trend", color="orange")        axs[1].set_title("Trend Component")               axs[2].plot(t, decomp.seasonal, label="Seasonal", color="green")        axs[2].set_title("Seasonal Component")               axs[3].plot(t, decomp.resid, label="Residual", color="red")        axs[3].set_title("Residual Component")               for ax in axs:            ax.legend()               fig_decomp.tight_layout()        state["plot_decomposition"] = fig_decomp      except Exception as e:        fig_err = plt.figure(figsize=(8, 4))        plt.text(0.5, 0.5, f"Decomposition Error: {str(e)}",                 horizontalalignment='center', verticalalignment='center')        state["plot_decomposition"] = fig_err

This function, update_simulation, generates a synthetic time series by combining a linear trend, a sinusoidal seasonal pattern, and random noise. It then calculates summary statistics. It updates the reactive state with the simulation data. It produces two matplotlib figures, one for the simulated time series and one for its seasonal decomposition, while handling potential errors in the decomposition process.

update_simulation(state)page = """# Advanced Time Series Simulation and Analysis DashboardThis dashboard simulates time series data using customizable parameters and performs a seasonal decomposition to extract trend, seasonal, and residual components.## Simulation ParametersAdjust the sliders below to modify the simulation:- **Trend Coefficient:** Controls the strength of the linear trend.- **Seasonal Amplitude:** Adjusts the intensity of the weekly seasonal component.- **Noise Level:** Sets the randomness in the simulation.- **Time Horizon (days):** Defines the number of data points (days) in the simulation.<|{trend_coeff}|slider|min=-1|max=1|step=0.01|label=Trend Coefficient|on_change=update_simulation|><|{seasonal_amplitude}|slider|min=0|max=10|step=0.1|label=Seasonal Amplitude|on_change=update_simulation|><|{noise_level}|slider|min=0|max=5|step=0.1|label=Noise Level|on_change=update_simulation|><|{time_horizon}|slider|min=50|max=500|step=10|label=Time Horizon (days)|on_change=update_simulation|>## Simulated Time SeriesThis plot displays the simulated time series based on your parameter settings:<|pyplot|figure=plot_timeseries|>## Seasonal DecompositionThe decomposition below splits the time series into its observed, trend, seasonal, and residual components:<|pyplot|figure=plot_decomposition|>## Summary Statistics{summary}---*This advanced dashboard is powered by Taipy's reactive engine, ensuring real-time updates and an in-depth analysis experience as you adjust the simulation parameters.*"""Gui(page).run(state=state, notebook=True)

Finally, update_simulation(state) generates the initial simulation data and plots and defines a Taipy dashboard layout with interactive sliders, plots, and summary statistics. Finally, it launches the dashboard in notebook mode with Gui(page).run(state=state, notebook=True), ensuring real-time interactivity.

In conclusion, we have illustrated Taipy in creating sophisticated, reactive dashboards that bring complex data analyses to life. By constructing a detailed time series simulation paired with a comprehensive seasonal decomposition, we have shown how Taipy integrates with popular libraries like Matplotlib and statsmodels to deliver an engaging, real-time analytical experience. The ability to tweak simulation parameters on the fly and instantly observe their impact enhances understanding of underlying data patterns and exemplifies Taipy’s potential to drive deeper insights.


Here is the Colab Notebook. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 90k+ ML SubReddit.

[Register Now] miniCON Virtual Conference on AGENTIC AI: FREE REGISTRATION + Certificate of Attendance + 4 Hour Short Event (May 21, 9 am- 1 pm PST) + Hands on Workshop

The post A Coding Implementation for Building Python-based Data and Business intelligence BI Web Applications with Taipy: Dynamic Interactive Time Series Analysis, Real-Time Simulation, Seasonal Decomposition, and Advanced Visualization appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Taipy 时间序列分析 交互式仪表盘 数据可视化
相关文章